|
import os |
|
import shutil |
|
import tempfile |
|
|
|
import h5py |
|
import numpy as np |
|
import pytest |
|
import torch |
|
|
|
from pathml.datasets.datasets import EntityDataset, TileDataset |
|
|
|
|
|
from pathml.graph import Graph |
|
|
|
|
|
@pytest.fixture |
|
def create_test_h5_file(): |
|
""" |
|
Fixture to create a temporary h5 file simulating the output of SlideData processing. |
|
This file will serve as input for testing TileDataset. |
|
""" |
|
tmp_dir = tempfile.mkdtemp() |
|
h5_path = os.path.join(tmp_dir, "test_tile_dataset.h5") |
|
|
|
with h5py.File(h5_path, "w") as f: |
|
tiles = f.create_group("tiles") |
|
tiles.attrs["tile_shape"] = "(224, 224, 3)" |
|
for i in range(5): |
|
tile = tiles.create_group(str(i)) |
|
array_data = np.random.rand(224, 224, 3).astype( |
|
"float32" |
|
) |
|
tile.create_dataset("array", data=array_data) |
|
if i % 2 == 0: |
|
masks = tile.create_group("masks") |
|
masks.create_dataset( |
|
"mask1", |
|
data=np.random.randint(2, size=(224, 224)).astype("float32"), |
|
) |
|
labels = tile.create_group("labels").attrs |
|
labels["example_label"] = "label_value" |
|
fields = f.create_group("fields") |
|
labels = fields.create_group("labels") |
|
labels.attrs["slide_label"] = "slide_value" |
|
|
|
yield h5_path |
|
os.remove(h5_path) |
|
os.rmdir(tmp_dir) |
|
|
|
|
|
def test_tile_dataset_initialization(create_test_h5_file): |
|
h5_path = create_test_h5_file |
|
dataset = TileDataset(h5_path) |
|
|
|
assert len(dataset) == 5 |
|
assert dataset.tile_shape == (224, 224, 3) |
|
assert dataset.slide_level_labels["slide_label"] == "slide_value" |
|
|
|
|
|
def test_tile_dataset_getitem(create_test_h5_file): |
|
h5_path = create_test_h5_file |
|
dataset = TileDataset(h5_path) |
|
|
|
for i in range(len(dataset)): |
|
im, masks, lab_tile, lab_slide = dataset[i] |
|
|
|
|
|
assert im.shape == ( |
|
3, |
|
224, |
|
224, |
|
), "Image tensor shape should match expected (C, H, W)" |
|
if masks is not None: |
|
assert masks.shape[0] > 0 and masks.shape[1:] == ( |
|
224, |
|
224, |
|
), "Mask shape should be (n_masks, H, W)" |
|
assert "example_label" in lab_tile, "Tile labels should include 'example_label'" |
|
assert ( |
|
lab_slide["slide_label"] == "slide_value" |
|
), "Slide label should match expected value" |
|
|
|
|
|
def test_tile_dataset_unsupported_shape_explicit_check(create_test_h5_file): |
|
h5_path = create_test_h5_file |
|
dataset = TileDataset(h5_path) |
|
|
|
with h5py.File(h5_path, "r+") as f: |
|
|
|
del f["tiles"]["0"]["array"] |
|
f["tiles"]["0"].create_dataset( |
|
"array", data=np.random.rand(10, 10) |
|
) |
|
|
|
try: |
|
_ = dataset[0] |
|
assert False, "NotImplementedError was expected but not raised." |
|
except NotImplementedError: |
|
pass |
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_tile_dataset_with_masks(create_test_h5_file): |
|
h5_path = create_test_h5_file |
|
dataset = TileDataset(h5_path) |
|
|
|
|
|
_, masks, _, _ = dataset[0] |
|
assert masks is not None, "Masks should be present" |
|
assert masks.shape[0] > 0, "There should be at least one mask" |
|
|
|
|
|
def fake_graph_inputs(): |
|
|
|
edge_index = torch.tensor([[0, 1, 1, 2], [1, 0, 2, 1]], dtype=torch.long) |
|
node_centroids = torch.randn(3, 2) |
|
node_features = torch.randn(3, 2) |
|
target = torch.tensor([1]) |
|
|
|
graph_obj = Graph( |
|
edge_index=edge_index, |
|
node_centroids=node_centroids, |
|
node_features=node_features, |
|
target=target, |
|
) |
|
assignment = assignment = torch.randint(low=0, high=3, size=(3, 2)).long() |
|
|
|
return graph_obj, graph_obj, assignment |
|
|
|
|
|
@pytest.fixture |
|
def create_test_graph_file(): |
|
""" |
|
Fixture to create a temporary h5 file simulating the output of SlideData processing. |
|
This file will serve as input for testing TileDataset. |
|
""" |
|
graphs_path = tempfile.mkdtemp() |
|
os.makedirs(os.path.join(graphs_path, "cell_graphs", "train"), exist_ok=True) |
|
os.makedirs(os.path.join(graphs_path, "tissue_graphs", "train"), exist_ok=True) |
|
os.makedirs( |
|
os.path.join(graphs_path, "assignment_matrices", "train"), exist_ok=True |
|
) |
|
|
|
cell_graph, tissue_graph, assignment = fake_graph_inputs() |
|
|
|
torch.save( |
|
cell_graph, os.path.join(graphs_path, "cell_graphs", "train", "example.pt") |
|
) |
|
torch.save( |
|
tissue_graph, os.path.join(graphs_path, "tissue_graphs", "train", "example.pt") |
|
) |
|
torch.save( |
|
assignment, |
|
os.path.join(graphs_path, "assignment_matrices", "train", "example.pt"), |
|
) |
|
|
|
yield graphs_path |
|
os.remove(os.path.join(graphs_path, "cell_graphs", "train", "example.pt")) |
|
os.remove(os.path.join(graphs_path, "tissue_graphs", "train", "example.pt")) |
|
os.remove(os.path.join(graphs_path, "assignment_matrices", "train", "example.pt")) |
|
shutil.rmtree(graphs_path) |
|
|
|
|
|
def test_entity_dataset(create_test_graph_file): |
|
|
|
graphs_path = create_test_graph_file |
|
train_dataset = EntityDataset( |
|
os.path.join(graphs_path, "cell_graphs/train/"), |
|
os.path.join(graphs_path, "tissue_graphs/train/"), |
|
os.path.join(graphs_path, "assignment_matrices/train/"), |
|
) |
|
batch = train_dataset[0] |
|
|
|
assert batch.x_cell.shape == (3, 2) |
|
assert batch.x_tissue.shape == (3, 2) |
|
assert batch.edge_index_cell.shape == (2, 4) |
|
assert batch.edge_index_tissue.shape == (2, 4) |
|
assert len(train_dataset) == 1 |
|
|