|
""" |
|
Copyright 2021, Dana-Farber Cancer Institute and Weill Cornell Medicine |
|
License: GNU GPL 2.0 |
|
""" |
|
|
|
import urllib |
|
import zipfile |
|
|
|
import cv2 |
|
import numpy as np |
|
import pytest |
|
|
|
from pathml.datasets import PanNukeDataModule |
|
from pathml.datasets.pannuke import PanNukeDataset |
|
from pathml.datasets.utils import pannuke_multiclass_mask_to_nucleus_mask |
|
|
|
|
|
def create_fake_pannuke_data(target_dir, n_fold=16): |
|
""" |
|
create some fake images and masks in target_dir/images and target_dir/masks |
|
|
|
Args: |
|
target_dir (pathlib.Path): directory where to save the images and masks. 'images' and 'masks' subdirectories |
|
will be created here. |
|
n_fold (int): number of images and masks per fold |
|
""" |
|
folds = [1, 2, 3] |
|
tissue_types = ["breast", "colon", "head-neck"] |
|
|
|
imdir = target_dir / "images" |
|
maskdir = target_dir / "masks" |
|
|
|
imdir.mkdir() |
|
maskdir.mkdir() |
|
|
|
for fold_ix in folds: |
|
for i in range(n_fold): |
|
im = np.random.randint(low=2, high=254, size=(256, 256, 3), dtype=np.uint8) |
|
mask = np.random.randint(low=0, high=10, size=(6, 256, 256), dtype=np.uint8) |
|
tissue_type = np.random.choice(tissue_types) |
|
|
|
im_fname = imdir / f"fold{fold_ix}_{i}_{tissue_type}.png" |
|
im_fname = str(im_fname.resolve()) |
|
mask_fname = maskdir / f"fold{fold_ix}_{i}_{tissue_type}.npy" |
|
mask_fname = str(mask_fname.resolve()) |
|
|
|
cv2.imwrite(im_fname, im) |
|
np.save(mask_fname, mask) |
|
|
|
|
|
@pytest.mark.parametrize("fold", [1, 2, 3, None]) |
|
@pytest.mark.parametrize("nucleus_type_labels", [True, False]) |
|
def test_pannuke_dataset_sizes(tmp_path, fold, nucleus_type_labels): |
|
n_fold = 16 |
|
create_fake_pannuke_data(tmp_path, n_fold=n_fold) |
|
|
|
pannuke_dataset = PanNukeDataset( |
|
data_dir=tmp_path, fold_ix=fold, nucleus_type_labels=nucleus_type_labels |
|
) |
|
|
|
|
|
if fold in [1, 2, 3]: |
|
assert len(pannuke_dataset) == n_fold |
|
else: |
|
assert len(pannuke_dataset) == 3 * n_fold |
|
|
|
|
|
im, mask, lab = pannuke_dataset[0] |
|
assert im.shape == (3, 256, 256) |
|
|
|
if nucleus_type_labels: |
|
assert mask.shape == (6, 256, 256) |
|
else: |
|
assert mask.shape == (256, 256) |
|
|
|
|
|
def create_fake_pannuke_data_raw(target_dir, fold_size=16): |
|
""" |
|
Create some fake raw data that mimics file structure of what is downloaded from PanNuke website: |
|
https://warwick.ac.uk/fac/sci/dcs/research/tia/data/pannuke/ |
|
|
|
Args: |
|
target_dir (pathlib.Path): directory where to save the data. |
|
fold_size (int): number of images and masks per fold |
|
""" |
|
folds = [1, 2, 3] |
|
tissue_types = ["breast", "colon", "head-neck"] |
|
|
|
for fold_ix in folds: |
|
|
|
images_dir = target_dir / f"Fold {fold_ix}" / "images" / f"fold{fold_ix}" |
|
masks_dir = target_dir / f"Fold {fold_ix}" / "masks" / f"fold{fold_ix}" |
|
images_dir.mkdir(parents=True) |
|
masks_dir.mkdir(parents=True) |
|
|
|
|
|
types_fold = np.random.choice(tissue_types, size=fold_size) |
|
masks = np.random.randint(low=0, high=10, size=(fold_size, 256, 256, 6)) |
|
ims = np.random.randint(low=0, high=254, size=(fold_size, 256, 256, 3)) |
|
|
|
|
|
np.save(file=str(images_dir / "images.npy"), arr=ims) |
|
np.save(file=str(images_dir / "types.npy"), arr=types_fold) |
|
np.save(file=str(masks_dir / "masks.npy"), arr=masks) |
|
|
|
|
|
def test_process_downloaded_pannuke(tmp_path): |
|
"""Test the post-processing of the pannuke raw data""" |
|
|
|
fold_size = 16 |
|
create_fake_pannuke_data_raw(tmp_path, fold_size=fold_size) |
|
|
|
|
|
PanNukeDataModule._process_downloaded_pannuke(tmp_path) |
|
|
|
|
|
imdir = tmp_path / "images" |
|
maskdir = tmp_path / "masks" |
|
|
|
assert imdir.is_dir() |
|
assert maskdir.is_dir() |
|
|
|
assert len(list(imdir.glob("*"))) == 3 * fold_size |
|
assert len(list(maskdir.glob("*"))) == 3 * fold_size |
|
|
|
for fold_ix in [1, 2, 3]: |
|
assert len(list(imdir.glob(f"fold{fold_ix}*"))) == fold_size |
|
assert len(list(maskdir.glob(f"fold{fold_ix}*"))) == fold_size |
|
|
|
|
|
@pytest.mark.parametrize("raw_data", [True, False]) |
|
@pytest.mark.parametrize("hovernet_preprocess", [True, False]) |
|
@pytest.mark.parametrize("split", [1, 2, 3, None]) |
|
@pytest.mark.parametrize("nucleus_type_labels", [True, False]) |
|
def test_pannuke_datamodule( |
|
tmp_path, split, nucleus_type_labels, hovernet_preprocess, raw_data |
|
): |
|
|
|
|
|
fold_size = 8 |
|
|
|
if raw_data: |
|
create_fake_pannuke_data_raw(tmp_path, fold_size=fold_size) |
|
|
|
PanNukeDataModule._process_downloaded_pannuke(tmp_path) |
|
else: |
|
create_fake_pannuke_data(tmp_path, n_fold=fold_size) |
|
|
|
batch_size = 4 |
|
pannuke = PanNukeDataModule( |
|
data_dir=tmp_path, |
|
nucleus_type_labels=nucleus_type_labels, |
|
split=split, |
|
download=False, |
|
transforms=None, |
|
batch_size=batch_size, |
|
hovernet_preprocess=hovernet_preprocess, |
|
) |
|
|
|
train = pannuke.train_dataloader |
|
valid = pannuke.valid_dataloader |
|
test = pannuke.test_dataloader |
|
|
|
for loader in [train, test, valid]: |
|
|
|
if hovernet_preprocess: |
|
im, mask, hv, tissue_types = next(iter(loader)) |
|
assert hv.shape == (batch_size, 2, 256, 256) |
|
else: |
|
im, mask, tissue_types = next(iter(loader)) |
|
|
|
assert im.shape == (batch_size, 3, 256, 256) |
|
if nucleus_type_labels: |
|
assert mask.shape == (batch_size, 6, 256, 256) |
|
else: |
|
assert mask.shape == (batch_size, 256, 256) |
|
|
|
assert len(tissue_types) == batch_size and all( |
|
[isinstance(t, str) for t in tissue_types] |
|
) |
|
|
|
|
|
def test_clean_up_download_pannuke(tmp_path): |
|
|
|
for fold_ix in [1, 2, 3]: |
|
with zipfile.ZipFile(tmp_path / f"fold_{fold_ix}.zip", "w") as myzip: |
|
myzip.writestr("fake_pannuke_data.txt", "NYE 2020 - happy new year!") |
|
downloaded_dir = tmp_path / f"Fold {fold_ix}" |
|
downloaded_dir.mkdir() |
|
|
|
data = np.random.randint(low=0, high=10, size=(8, 256, 256, 6)) |
|
np.save(file=str(downloaded_dir / "data.npy"), arr=data) |
|
|
|
|
|
PanNukeDataModule._clean_up_download_pannuke(tmp_path) |
|
|
|
|
|
for fold_ix in [1, 2, 3]: |
|
zfile = tmp_path / f"fold_{fold_ix}.zip" |
|
downloaded_dir = tmp_path / f"Fold {fold_ix}" |
|
assert not zfile.exists() |
|
assert not downloaded_dir.exists() |
|
|
|
|
|
def check_pannuke_data_urls(): |
|
|
|
for fold_ix in [1, 2, 3]: |
|
url = f"https://warwick.ac.uk/fac/sci/dcs/research/tia/data/pannuke/fold_{fold_ix}.zip" |
|
r = urllib.request.urlopen(url) |
|
|
|
assert r.getcode() == 200 |
|
|
|
|
|
def check_wrong_path_download_false_fails(): |
|
with pytest.raises(AssertionError): |
|
PanNukeDataModule(data_dir="wrong/path/to/pannuke", download=False) |
|
|
|
|
|
def test_pannuke_multiclass_mask_to_nucleus_mask(): |
|
mask = np.random.randint(low=0, high=10, size=(6, 256, 256), dtype=np.uint8) |
|
mask_1c = pannuke_multiclass_mask_to_nucleus_mask(mask) |
|
assert mask_1c.shape == (256, 256) |
|
|
|
|
|
|
|
|