introvoyz041's picture
Migrated from GitHub
12d2e9e verified
"""
Copyright 2021, Dana-Farber Cancer Institute and Weill Cornell Medicine
License: GNU GPL 2.0
"""
import copy
import pickle
import numpy as np
import pandas as pd
import pytest
from pathml.preprocessing import (
BinaryThreshold,
BoxBlur,
CollapseRunsVectra,
GaussianBlur,
MedianBlur,
MorphClose,
MorphOpen,
Pipeline,
QuantifyMIF,
)
from pathml.utils import RGB_to_GREY
def test_pipeline_passthru(tileHE):
p = Pipeline()
assert p.apply(tileHE) == tileHE
def test_pipeline_repr():
p = Pipeline()
p2 = Pipeline([MedianBlur()])
repr(p)
repr(p2)
# make an example pipeline
def test_pipeline_HE(tileHE):
pipe = Pipeline(
[
MedianBlur(),
GaussianBlur(),
BoxBlur(),
BinaryThreshold(mask_name="testing"),
MorphOpen(mask_name="testing"),
MorphClose(mask_name="testing"),
]
)
assert len(pipe) == 6
orig_im = tileHE.image
pipe.apply(tileHE)
im = MedianBlur().F(orig_im)
im = GaussianBlur().F(im)
im = BoxBlur().F(im)
m = BinaryThreshold().F(RGB_to_GREY(im))
m = MorphOpen().F(m)
m = MorphClose().F(m)
assert np.array_equal(tileHE.image, im)
assert np.array_equal(tileHE.masks["testing"], m)
# TODO: this segmentation model requires gpu
def test_pipeline_mif(tileVectra):
"""
Run MIF pipeline
"""
pytest.importorskip("deepcell")
from pathml.preprocessing.transforms import SegmentMIF
orig_tile = copy.copy(tileVectra)
pipe = Pipeline(
[
CollapseRunsVectra(),
SegmentMIF(
model="mesmer",
nuclear_channel=0,
cytoplasm_channel=2,
image_resolution=0.5,
),
QuantifyMIF(segmentation_mask="cell_segmentation"),
]
)
assert len(pipe) == 3
pipe.apply(tileVectra)
collapsed_im = CollapseRunsVectra().F(orig_tile.image)
cell_segmentation, nuclear_segmentation = SegmentMIF(
model="mesmer", nuclear_channel=0, cytoplasm_channel=2, image_resolution=0.5
).F(collapsed_im)
orig_tile.image = collapsed_im
orig_tile.masks["segmentation_mask"] = cell_segmentation
adata = QuantifyMIF(segmentation_mask="segmentation_mask").F(
orig_tile.image, orig_tile.masks["segmentation_mask"], orig_tile.coords
)
assert np.array_equal(tileVectra.masks["cell_segmentation"], cell_segmentation)
pd.testing.assert_frame_equal(adata.obs, tileVectra.counts.obs)
def test_pipeline_save(tmp_path):
# tmp_path is a temporary path used for testing
fp = tmp_path / "test"
pipeline = Pipeline([MedianBlur()])
pipeline.save(fp)
pipeline_loaded = pickle.load(open(fp, "rb"))
assert repr(pipeline_loaded) == repr(pipeline)
assert type(pipeline_loaded) is type(pipeline)