{ "cells": [ { "cell_type": "markdown", "id": "1ae9717c-793f-4c67-a867-df48c4210487", "metadata": {}, "source": [ "# Talk to PathML\n", "\n", "### A digital pathology assistant for democratizing access to advanced computational image analysis " ] }, { "cell_type": "markdown", "id": "c4f09515-97fb-4a7a-8fcb-1eba0d631d21", "metadata": {}, "source": [ "We leveraged the recent progress in medical Large Language Models (LLMs) to create a new chat interface for those who would like to get started with PathML for advanced image analysis. This was implemented by injecting all PathML examples and documentation into a Retrieval Augmented Generation (RAG) system based on GPT-4 capabilities. Our “Digital Pathology Assistant” prototype, available [here](https://chat.openai.com/g/g-L1IbnIIVt-digital-pathology-assistant-v3-0), can be leveraged to build advanced end-to-end computational pipelines for specific use-cases. \n", "\n", "In this notebook, we report specific examples of how it can be used to generate specific computational pipelines for preprocessing and analyzing different types of multiplexed images. " ] }, { "cell_type": "markdown", "id": "56ad469f-55ef-4fe5-919e-edc2668e6f2b", "metadata": {}, "source": [ "## Example 1: Installing PathML on MacOS" ] }, { "cell_type": "markdown", "id": "ec516a56-0cd1-4a9d-9c07-56c31c4a7921", "metadata": {}, "source": [ "![INSTALL_MACOS](static/pathml_install.png) " ] }, { "cell_type": "markdown", "id": "8db55b66-7c4c-4462-80f3-4b6e8a729be5", "metadata": {}, "source": [ "## Example 2: Information about supported file types" ] }, { "cell_type": "markdown", "id": "da0a5d92-06e9-40cb-ae36-db5d5d57ff8b", "metadata": {}, "source": [ "![PATHML_FILE_TYPE](static/pathml_file_type.png)" ] }, { "cell_type": "markdown", "id": "908c8357-35f7-410e-9b54-d44fae049c6b", "metadata": {}, "source": [ "## Example 3: MIF pipelines" ] }, { "cell_type": "markdown", "id": "a5dadf45-8b9b-4e5e-ac2a-cac9a61b6835", "metadata": {}, "source": [ "![PATHML_MIF](static/pathml_mif.png)" ] }, { "cell_type": "markdown", "id": "bc394e3c-3867-489b-9c86-6cfcef30520f", "metadata": {}, "source": [ "## Example 4: Nucleus Detection" ] }, { "cell_type": "markdown", "id": "ac8ad6d1-98d0-44e5-9048-6d7adfe66d5a", "metadata": {}, "source": [ "![PATHML_NUCLEUS](static/pathml_nucleus_detection.png)" ] }, { "cell_type": "markdown", "id": "6242d6b7-6c9f-4857-a12d-56909225e369", "metadata": {}, "source": [ "## Example 5: Graph API" ] }, { "cell_type": "markdown", "id": "75a03e24-50fb-48a1-8db6-b8e6f831d243", "metadata": {}, "source": [ "![PATHML_GRAPH](static/pathml_graph.png)" ] }, { "cell_type": "markdown", "id": "d73742dc-c9f0-4507-a8b7-d955868ef32f", "metadata": {}, "source": [ "## Example 6: Inference API" ] }, { "cell_type": "markdown", "id": "92ac0857-fba4-45fc-b3a9-26cb97176bb7", "metadata": {}, "source": [ "![PATHML_INFERENCE](static/pathml_inference.png)" ] }, { "cell_type": "code", "execution_count": null, "id": "198f61ef-6dd8-4d04-8168-e313e0bebcc5", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "pathml_env", "language": "python", "name": "pathml_env" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.0" } }, "nbformat": 4, "nbformat_minor": 5 }