""" Copyright 2021, Dana-Farber Cancer Institute and Weill Cornell Medicine License: GNU GPL 2.0 """ from io import BytesIO import numpy as np import openslide from javabridge.jutil import JavaException from loguru import logger from PIL import Image from pydicom.dataset import Dataset from pydicom.encaps import get_frame_offsets from pydicom.filebase import DicomFile from pydicom.filereader import data_element_offset_to_value, dcmread from pydicom.tag import SequenceDelimiterTag, TupleTag from pydicom.uid import UID from scipy.ndimage import zoom import pathml.core import pathml.core.tile from pathml.utils import pil_to_rgb try: import bioformats import javabridge from bioformats.metadatatools import createOMEXMLMetadata except ImportError: # pragma: no cover logger.exception("Unable to import bioformats, javabridge") raise Exception( "Installation of PathML not complete. Please install openjdk8, bioformats, and javabridge:\nconda install openjdk==8.0.152\npip install javabridge==1.0.19 python-bioformats==4.0.0\nFor detailed installation instructions, please see https://github.com/Dana-Farber-AIOS/pathml/" ) class SlideBackend: """base class for backends that interface with slides on disk""" def extract_region(self, location, size, level, **kwargs): raise NotImplementedError def get_thumbnail(self, size, **kwargs): raise NotImplementedError def get_image_shape(self, **kwargs): raise NotImplementedError def generate_tiles(self, shape, stride, pad, **kwargs): raise NotImplementedError class OpenSlideBackend(SlideBackend): """ Use OpenSlide to interface with image files. Depends on `openslide-python `_ which wraps the `openslide `_ C library. Args: filename (str): path to image file on disk """ def __init__(self, filename): logger.info(f"OpenSlideBackend loading file at: {filename}") self.filename = filename self.slide = openslide.open_slide(filename=filename) self.level_count = self.slide.level_count def __repr__(self): return f"OpenSlideBackend('{self.filename}')" def extract_region(self, location, size, level=None): """ Extract a region of the image Args: location (Tuple[int, int]): Location of top-left corner of tile (i, j) size (Union[int, Tuple[int, int]]): Size of each tile. May be a tuple of (height, width) or a single integer, in which case square tiles of that size are generated. level (int): level from which to extract chunks. Level 0 is highest resolution. Returns: np.ndarray: image at the specified region """ # verify args if isinstance(size, int): size = (size, size) else: assert ( isinstance(size, tuple) and all([isinstance(a, int) for a in size]) and len(size) == 2 ), f"Input size {size} not valid. Must be an integer or a tuple of two integers." if level is None: level = 0 else: assert isinstance(level, int), f"level {level} must be an integer" assert ( level < self.slide.level_count ), f"input level {level} invalid for a slide with {self.slide.level_count} levels" # openslide read_region expects (x, y) coords, so need to switch order for compatibility with pathml (i, j) i, j = location # openslide read_region() uses coords in the level 0 reference frame # if we are reading tiles from a higher level, need to convert to level 0 frame by multiplying by scale factor # see: https://github.com/Dana-Farber-AIOS/pathml/issues/240 coord_scale_factor = int(self.slide.level_downsamples[level]) i *= coord_scale_factor j *= coord_scale_factor h, w = size region = self.slide.read_region(location=(j, i), level=level, size=(w, h)) region_rgb = pil_to_rgb(region) return region_rgb def get_image_shape(self, level=0): """ Get the shape of the image at specified level. Args: level (int): Which level to get shape from. Level 0 is highest resolution. Defaults to 0. Returns: Tuple[int, int]: Shape of image at target level, in (i, j) coordinates. """ assert isinstance(level, int), f"level {level} invalid. Must be an int." assert ( level < self.slide.level_count ), f"input level {level} invalid for slide with {self.slide.level_count} levels total" j, i = self.slide.level_dimensions[level] return i, j def get_thumbnail(self, size): """ Get a thumbnail of the slide. Args: size (Tuple[int, int]): the maximum size of the thumbnail Returns: np.ndarray: RGB thumbnail image """ thumbnail = self.slide.get_thumbnail(size) thumbnail = pil_to_rgb(thumbnail) return thumbnail def generate_tiles(self, shape=3000, stride=None, pad=False, level=0): """ Generator over tiles. Padding works as follows: If ``pad is False``, then the first tile will start flush with the edge of the image, and the tile locations will increment according to specified stride, stopping with the last tile that is fully contained in the image. If ``pad is True``, then the first tile will start flush with the edge of the image, and the tile locations will increment according to specified stride, stopping with the last tile which starts in the image. Regions outside the image will be padded with 0. For example, for a 5x5 image with a tile size of 3 and a stride of 2, tile generation with ``pad=False`` will create 4 tiles total, compared to 6 tiles if ``pad=True``. Args: shape (int or tuple(int)): Size of each tile. May be a tuple of (height, width) or a single integer, in which case square tiles of that size are generated. stride (int): stride between chunks. If ``None``, uses ``stride = size`` for non-overlapping chunks. Defaults to ``None``. pad (bool): How to handle tiles on the edges. If ``True``, these edge tiles will be zero-padded and yielded with the other chunks. If ``False``, incomplete edge chunks will be ignored. Defaults to ``False``. level (int, optional): For slides with multiple levels, which level to extract tiles from. Defaults to 0 (highest resolution). Yields: pathml.core.tile.Tile: Extracted Tile object """ assert isinstance(shape, int) or ( isinstance(shape, tuple) and len(shape) == 2 ), f"input shape {shape} invalid. Must be a tuple of (H, W), or a single integer for square tiles" if isinstance(shape, int): shape = (shape, shape) assert ( stride is None or isinstance(stride, int) or (isinstance(stride, tuple) and len(stride) == 2) ), f"input stride {stride} invalid. Must be a tuple of (stride_H, stride_W), or a single int" if level is None: level = 0 assert isinstance(level, int), f"level {level} invalid. Must be an int." assert ( level < self.slide.level_count ), f"input level {level} invalid for slide with {self.slide.level_count} levels total" if stride is None: stride = shape elif isinstance(stride, int): stride = (stride, stride) i, j = self.get_image_shape(level=level) stride_i, stride_j = stride # calculate number of expected tiles # check for tile shape evenly dividing slide shape to fix https://github.com/Dana-Farber-AIOS/pathml/issues/305 if pad and i % stride_i != 0: n_tiles_i = i // stride_i + 1 else: n_tiles_i = (i - shape[0]) // stride_i + 1 if pad and j % stride_j != 0: n_tiles_j = j // stride_j + 1 else: n_tiles_j = (j - shape[1]) // stride_j + 1 for ix_i in range(n_tiles_i): for ix_j in range(n_tiles_j): coords = (int(ix_i * stride_i), int(ix_j * stride_j)) # get image for tile tile_im = self.extract_region(location=coords, size=shape, level=level) yield pathml.core.tile.Tile(image=tile_im, coords=coords) def _init_logger(): """ This is so that Javabridge doesn't spill out a lot of DEBUG messages during runtime. From CellProfiler/python-bioformats. Credits to: https://github.com/pskeshu/microscoper/blob/master/microscoper/io.py#L141-L162 """ rootLoggerName = javabridge.get_static_field( "org/slf4j/Logger", "ROOT_LOGGER_NAME", "Ljava/lang/String;" ) rootLogger = javabridge.static_call( "org/slf4j/LoggerFactory", "getLogger", "(Ljava/lang/String;)Lorg/slf4j/Logger;", rootLoggerName, ) logLevel = javabridge.get_static_field( "ch/qos/logback/classic/Level", "WARN", "Lch/qos/logback/classic/Level;" ) javabridge.call( rootLogger, "setLevel", "(Lch/qos/logback/classic/Level;)V", logLevel ) logger.info("silenced javabridge logging") class BioFormatsBackend(SlideBackend): """ Use BioFormats to interface with image files. Now support multi-level images. Depends on `python-bioformats `_ which wraps ome bioformats java library, parses pixel and metadata of proprietary formats, and converts all formats to OME-TIFF. Please cite: https://pubmed.ncbi.nlm.nih.gov/20513764/ Args: filename (str): path to image file on disk dtype (numpy.dtype): data type of image. If ``None``, will use BioFormats to infer the data type from the image's OME metadata. Defaults to ``None``. Note: While the Bio-Formats convention uses XYZCT channel order, we use YXZCT for compatibility with the rest of PathML which is based on (i, j) coordinate system. """ def __init__(self, filename, dtype=None): self.filename = filename logger.info(f"BioFormatsBackend loading file at: {filename}") # init java virtual machine javabridge.start_vm(class_path=bioformats.JARS, max_heap_size="50G") # disable verbose JVM logging if possible try: _init_logger() except JavaException: # pragma: no cover pass # java maximum array size of 2GB constrains image size ImageReader = bioformats.formatreader.make_image_reader_class() reader = ImageReader() omeMeta = createOMEXMLMetadata() reader.setMetadataStore(omeMeta) reader.setId(str(self.filename)) seriesCount = reader.getSeriesCount() logger.info(f"Found n={seriesCount} series in image") sizeSeries = [] for s in range(seriesCount): reader.setSeries(s) sizex, sizey, sizez, sizec, sizet = ( reader.getSizeX(), reader.getSizeY(), reader.getSizeZ(), reader.getSizeC(), reader.getSizeT(), ) # use yxzct for compatibility with the rest of PathML which uses i,j coords (not x, y) sizeSeries.append((sizey, sizex, sizez, sizec, sizet)) s = [s[0] * s[1] for s in sizeSeries] self.level_count = seriesCount # count of levels self.shape = sizeSeries[s.index(max(s))] # largest shape self.shape_list = sizeSeries # shape on all levels self.metadata = bioformats.get_omexml_metadata(self.filename) logger.info(f"Bioformats OMEXML metadata: {self.metadata}") if dtype: assert isinstance( dtype, np.dtype ), f"dtype is of type {type(dtype)}. Must be a np.dtype" self.pixel_dtype = dtype logger.info(f"Using specified dtype: {dtype}") else: # infer pixel data type from metadata # map from ome pixel datatypes to numpy types. Based on: # https://github.com/CellProfiler/python-bioformats/blob/c03fb0988caf686251707adc4332d0aff9f02941/bioformats/omexml.py#L77-L87 # but specifying that float = float32 (np.float defaults to float64) pixel_dtype_map = { bioformats.omexml.PT_INT8: np.dtype("int8"), bioformats.omexml.PT_INT16: np.dtype("int16"), bioformats.omexml.PT_INT32: np.dtype("int32"), bioformats.omexml.PT_UINT8: np.dtype("uint8"), bioformats.omexml.PT_UINT16: np.dtype("uint16"), bioformats.omexml.PT_UINT32: np.dtype("uint32"), bioformats.omexml.PT_FLOAT: np.dtype("float32"), bioformats.omexml.PT_BIT: np.dtype("bool"), bioformats.omexml.PT_DOUBLE: np.dtype("float64"), } ome_pixeltype = ( bioformats.OMEXML(self.metadata).image().Pixels.get_PixelType() ) logger.info(f"Using pixel dtype found in OME metadata: {ome_pixeltype}") try: self.pixel_dtype = pixel_dtype_map[ome_pixeltype] logger.info(f"Found corresponding dtype: {self.pixel_dtype}") # TODO: change to specific exception except Exception: logger.exception("datatype from metadata not found in pixel_dtype_map") raise Exception( f"pixel type '{ome_pixeltype}' detected from OME metadata not recognized." ) def __repr__(self): return f"BioFormatsBackend('{self.filename}')" def get_image_shape(self, level=None): """ Get the shape of the image on specific level. Args: level (int): Which level to get shape from. If ``level is None``, returns the shape of the biggest level. Defaults to ``None``. Returns: Tuple[int, int]: Shape of image (i, j) at target level """ if level is None: return self.shape[:2] else: assert isinstance(level, int), f"level {level} invalid. Must be an int." assert ( level < self.level_count ), f"input level {level} invalid for slide with {self.level_count} levels total" return self.shape_list[level][:2] def extract_region( self, location, size, level=0, series_as_channels=False, normalize=True ): """ Extract a region of the image. All bioformats images have 5 dimensions representing (i, j, z, channel, time). Even if an image does not have multiple z-series or time-series, those dimensions will still be kept. For example, a standard RGB image will be of shape (i, j, 1, 3, 1). If a tuple with len < 5 is passed, missing dimensions will be retrieved in full. Args: location (Tuple[int, int]): (i, j) location of corner of extracted region closest to the origin. size (Tuple[int, int, ...]): (i, j) size of each region. If an integer is passed, will convert to a tuple of (i, j) and extract a square region. If a tuple with len < 5 is passed, missing dimensions will be retrieved in full. level (int): level from which to extract chunks. Level 0 is highest resolution. Defaults to 0. series_as_channels (bool): Whether to treat image series as channels. If ``True``, multi-level images are not supported. Defaults to ``False``. normalize (bool, optional): Whether to normalize the image to int8 before returning. Defaults to True. If False, image will be returned as-is immediately after reading, typically in float64. Returns: np.ndarray: image at the specified region. 5-D array of (i, j, z, c, t) """ if level is None: level = 0 else: assert isinstance(level, int), f"level {level} invalid. Must be an int." assert ( level < self.level_count ), f"input level {level} invalid for slide with {self.level_count} levels total" # if a single int is passed for size, convert to a tuple to get a square region if type(size) is int: size = (size, size) if not ( isinstance(location, tuple) and len(location) < 3 and all([isinstance(x, int) for x in location]) ): raise ValueError( f"input location {location} invalid. Must be a tuple of integer coordinates of len<2" ) if not ( isinstance(size, tuple) and len(size) < 3 and all([isinstance(x, int) for x in size]) ): raise ValueError( f"input size {size} invalid. Must be a tuple of integer coordinates of len<2" ) if series_as_channels: logger.info("using series_as_channels=True") if level != 0: logger.exception( f"When series_as_channels=True, must use level=0. Input 'level={level}' invalid." ) raise ValueError( f"Multi-level images not supported with series_as_channels=True. Input 'level={level}' invalid. Use 'level=0'." ) javabridge.start_vm(class_path=bioformats.JARS, max_heap_size="100G") with bioformats.ImageReader(str(self.filename), perform_init=True) as reader: # expand size logger.info(f"extracting region with input size = {size}") size = list(size) arrayshape = list(size) for i in range(len(self.shape_list[level])): if i > len(size) - 1: arrayshape.append(self.shape_list[level][i]) arrayshape = tuple(arrayshape) logger.info(f"input size converted to {arrayshape}") array = np.empty(arrayshape) # read a very small region to check whether the image has channels incorrectly stored as series sample = reader.read( z=0, t=0, series=level, rescale=False, XYWH=(location[1], location[0], 2, 2), ) # need this part because some facilities output images where the channels are incorrectly stored as series # in this case we pull the image for each series, then stack them together as channels if series_as_channels: logger.info("reading series as channels") for z in range(self.shape_list[level][2]): for c in range(self.shape_list[level][3]): for t in range(self.shape_list[level][4]): slicearray = reader.read( z=z, t=t, series=c, rescale=False, XYWH=(location[1], location[0], size[1], size[0]), ) slicearray = np.asarray(slicearray) # some file formats read x, y out of order, transpose array[:, :, z, c, t] = slicearray # in this case, channels are correctly stored as channels, and we can support multi-level images as series else: logger.info("reading image") for z in range(self.shape_list[level][2]): for t in range(self.shape_list[level][4]): slicearray = reader.read( z=z, t=t, series=level, rescale=False, XYWH=(location[1], location[0], size[1], size[0]), ) slicearray = np.asarray(slicearray) if len(sample.shape) == 3: array[:, :, z, :, t] = slicearray else: array[:, :, z, level, t] = slicearray if not normalize: logger.info("returning extracted region without normalizing dtype") return array else: logger.info("normalizing extracted region to uint8") # scale array before converting: https://github.com/Dana-Farber-AIOS/pathml/issues/271 # first scale to [0-1] array_scaled = array / (2 ** (8 * self.pixel_dtype.itemsize)) logger.info( f"Scaling image to [0, 1] by dividing by {(2 ** (8 * self.pixel_dtype.itemsize))}" ) # then scale to [0-255] and convert to 8 bit array_scaled = array_scaled * 2**8 return array_scaled.astype(np.uint8) def get_thumbnail(self, size=None): """ Get a thumbnail of the image. Since there is no default thumbnail for multiparametric, volumetric images, this function supports downsampling of all image dimensions. Args: size (Tuple[int, int]): thumbnail size Returns: np.ndarray: RGB thumbnail image Example: Get 1000x1000 thumbnail of 7 channel fluorescent image. shape = data.slide.get_image_shape() thumb = data.slide.get_thumbnail(size=(1000,1000, shape[2], shape[3], shape[4])) """ assert isinstance(size, (tuple, type(None))), "Size must be a tuple of ints." if size is not None: if len(size) != len(self.shape): size = size + self.shape[len(size) :] if self.shape[0] * self.shape[1] * self.shape[2] * self.shape[3] > 2147483647: raise Exception( f"Java arrays allocate maximum 32 bits (~2GB). Image size is {self.imsize}" ) array = self.extract_region(location=(0, 0), size=self.shape[:2]) if size is not None: ratio = tuple([x / y for x, y in zip(size, self.shape)]) assert ( ratio[3] == 1 ), "cannot interpolate between fluor channels, resampling doesn't apply, fix size[3]" image_array = zoom(array, ratio) return image_array def generate_tiles(self, shape=3000, stride=None, pad=False, level=0, **kwargs): """ Generator over tiles. Padding works as follows: If ``pad is False``, then the first tile will start flush with the edge of the image, and the tile locations will increment according to specified stride, stopping with the last tile that is fully contained in the image. If ``pad is True``, then the first tile will start flush with the edge of the image, and the tile locations will increment according to specified stride, stopping with the last tile which starts in the image. Regions outside the image will be padded with 0. For example, for a 5x5 image with a tile size of 3 and a stride of 2, tile generation with ``pad=False`` will create 4 tiles total, compared to 6 tiles if ``pad=True``. Args: shape (int or tuple(int)): Size of each tile. May be a tuple of (height, width) or a single integer, in which case square tiles of that size are generated. stride (int): stride between chunks. If ``None``, uses ``stride = size`` for non-overlapping chunks. Defaults to ``None``. pad (bool): How to handle tiles on the edges. If ``True``, these edge tiles will be zero-padded and yielded with the other chunks. If ``False``, incomplete edge chunks will be ignored. Defaults to ``False``. **kwargs: Other arguments passed through to ``extract_region()`` method. Yields: pathml.core.tile.Tile: Extracted Tile object """ assert isinstance(level, int), f"level {level} invalid. Must be an int." assert ( level < self.level_count ), f"input level {level} invalid for slide with {self.level_count} levels total" assert isinstance(shape, int) or ( isinstance(shape, tuple) and len(shape) == 2 ), f"input shape {shape} invalid. Must be a tuple of (H, W), or a single integer for square tiles" if isinstance(shape, int): shape = (shape, shape) assert ( stride is None or isinstance(stride, int) or (isinstance(stride, tuple) and len(stride) == 2) ), f"input stride {stride} invalid. Must be a tuple of (stride_H, stride_W), or a single int" if stride is None: logger.info(f"stride not specified, using stride=shape ({shape})") stride = shape elif isinstance(stride, int): stride = (stride, stride) i, j = self.get_image_shape(level=level) stride_i, stride_j = stride # calculate number of expected tiles # check for tile shape evenly dividing slide shape to fix https://github.com/Dana-Farber-AIOS/pathml/issues/305 if pad and i % stride_i != 0: n_tiles_i = i // stride_i + 1 else: n_tiles_i = (i - shape[0]) // stride_i + 1 if pad and j % stride_j != 0: n_tiles_j = j // stride_j + 1 else: n_tiles_j = (j - shape[1]) // stride_j + 1 logger.info(f"expected number of tiles: {n_tiles_i} x {n_tiles_j}") for ix_i in range(n_tiles_i): for ix_j in range(n_tiles_j): coords = (int(ix_i * stride_i), int(ix_j * stride_j)) if coords[0] + shape[0] < i and coords[1] + shape[1] < j: # get image for tile tile_im = self.extract_region( location=coords, size=shape, level=level, **kwargs ) yield pathml.core.tile.Tile(image=tile_im, coords=coords) else: unpaddedshape = ( i - coords[0] if coords[0] + shape[0] > i else shape[0], j - coords[1] if coords[1] + shape[1] > j else shape[1], ) tile_im = self.extract_region( location=coords, size=unpaddedshape, level=level, **kwargs ) zeroarrayshape = list(tile_im.shape) zeroarrayshape[0], zeroarrayshape[1] = ( list(shape)[0], list(shape)[1], ) padded_im = np.zeros(zeroarrayshape) padded_im[: tile_im.shape[0], : tile_im.shape[1], ...] = tile_im yield pathml.core.tile.Tile(image=padded_im, coords=coords) class DICOMBackend(SlideBackend): """ Interface with DICOM files on disk. Provides efficient access to individual Frame items contained in the Pixel Data element without loading the entire element into memory. Assumes that frames are non-overlapping. DICOM does not support multi-level images. Args: filename (str): Path to the DICOM Part10 file on disk """ def __init__(self, filename): self.filename = str(filename) logger.info(f"DICOMBackend loading file at: {filename}") # read metadata fields of interest from DICOM, without reading the entire PixelArray tags = [ "NumberOfFrames", "Rows", "Columns", "TotalPixelMatrixRows", "TotalPixelMatrixColumns", ] metadata = dcmread(filename, specific_tags=tags) # can use frame shape, total shape to map between frame index and coords self.frame_shape = (metadata.Rows, metadata.Columns) self.shape = (metadata.TotalPixelMatrixRows, metadata.TotalPixelMatrixColumns) self.n_frames = int(metadata.NumberOfFrames) # use ceiling division to account for padding (i.e. still count incomplete frames on edge) # ceiling division from: https://stackoverflow.com/a/17511341 self.n_rows = -(-self.shape[0] // self.frame_shape[0]) self.n_cols = -(-self.shape[1] // self.frame_shape[1]) self.transfer_syntax_uid = UID(metadata.file_meta.TransferSyntaxUID) logger.info( f"DICOM metadata: frame_shape={self.frame_shape}, nrows = {self.n_rows}, ncols = {self.n_cols}" ) # actual file self.fp = DicomFile(self.filename, mode="rb") self.fp.is_little_endian = self.transfer_syntax_uid.is_little_endian self.fp.is_implicit_VR = self.transfer_syntax_uid.is_implicit_VR # need to do this to advance the file to the correct point, at the beginning of the pixels self.metadata = dcmread(self.fp, stop_before_pixels=True) self.pixel_data_offset = self.fp.tell() self.fp.seek(self.pixel_data_offset, 0) # note that reading this tag is necessary to advance the file to correct position _ = TupleTag(self.fp.read_tag()) # get basic offset table, to enable reading individual frames without loading entire image self.bot = self.get_bot(self.fp) self.first_frame = self.fp.tell() def __repr__(self): out = f"DICOMBackend('{self.filename}')\n" out += f"image shape: {self.shape}; frame shape: {self.frame_shape}; frame grid: {(self.n_rows, self.n_cols)}" return out @staticmethod def get_bot(fp): """ Reads the value of the Basic Offset Table. This table is used to access individual frames without loading the entire file into memory Args: fp (pydicom.filebase.DicomFile): pydicom DicomFile object Returns: list: Offset of each Frame of the Pixel Data element following the Basic Offset Table """ # Skip Pixel Data element header pixel_data_offset = data_element_offset_to_value(fp.is_implicit_VR, "OB") fp.seek(pixel_data_offset - 4, 1) _, basic_offset_table = get_frame_offsets(fp) first_frame_offset = fp.tell() fp.seek(first_frame_offset, 0) return basic_offset_table def get_image_shape(self): """ Get the shape of the image. Returns: Tuple[int, int]: Shape of image (H, W) """ return self.shape def get_thumbnail(self, size, **kwargs): raise NotImplementedError("DICOMBackend does not support thumbnail") def _index_to_coords(self, index): """ convert from frame index to frame coordinates using image shape, frame_shape. Frames start at 0, go across the rows sequentially, use padding at edges. Coordinates are for top-left corner of each Frame. e.g. if the image is 100x100, and each frame is 10x10, then the top row will contain frames 0 through 9, second row will contain frames 10 through 19, etc. Args: index (int): index of frame Returns: tuple: corresponding coordinates """ frame_i, frame_j = self.frame_shape # get which row and column we are in row_ix = index // self.n_cols col_ix = index % self.n_cols return row_ix * frame_i, col_ix * frame_j def _coords_to_index(self, coords): """ convert from frame coordinates to frame index using image shape, frame_shape. Frames start at 0, go across the rows sequentially, use zero padding at edges. Coordinates are for top-left corner of each Frame. e.g. if the image is 100x100, and each frame is 10x10, then coordinate (10, 10) corresponds to frame index 11 (second row, second column). Args: tuple (tuple): coordinates Returns: int: frame index """ i, j = coords frame_i, frame_j = self.frame_shape # frame size must evenly divide coords, otherwise we aren't on a frame corner if i % frame_i or j % frame_j: logger.exception(f"i={i}, j={j}, frame shape = {self.frame_shape}") raise ValueError( f"coords {coords} are not evenly divided by frame size {(frame_i, frame_j)}. Must provide coords at upper left corner of Frame." ) row_ix = i / frame_i col_ix = j / frame_j index = (row_ix * self.n_cols) + col_ix return int(index) def extract_region(self, location, size=None, level=None): """ Extract a single frame from the DICOM image. Args: location (Union[int, Tuple[int, int]]): coordinate location of top-left corner of frame, or integer index of frame. size (Union[int, Tuple[int, int]]): Size of each tile. May be a tuple of (height, width) or a single integer, in which case square tiles of that size are generated. Must be the same as the frame size. Returns: np.ndarray: image at the specified region """ assert level == 0 or level is None, "dicom does not support levels" # check inputs first # check location if isinstance(location, tuple): frame_ix = self._coords_to_index(location) elif isinstance(location, int): frame_ix = location else: raise ValueError( f"Invalid location: {location}. Must be an int frame index or tuple of (i, j) coordinates" ) if frame_ix > self.n_frames: raise ValueError( f"location {location} invalid. Exceeds total number of frames ({self.n_frames})" ) # check size if size: if type(size) is int: size = (size, size) if size != self.frame_shape: raise ValueError( f"Input size {size} must equal frame shape in DICOM image {self.frame_shape}" ) return self._read_frame(frame_ix) def _read_frame(self, frame_ix): """ Reads and decodes the pixel data of one frame. Based on implementation from highDICOM: https://github.com/MGHComputationalPathology/highdicom Args: frame_ix (int): zero-based index of the frame Returns: np.ndarray: pixel data of that frame """ frame_offset = self.bot[int(frame_ix)] self.fp.seek(self.first_frame + frame_offset, 0) try: stop_at = self.bot[frame_ix + 1] - frame_offset except IndexError: stop_at = None n = 0 # A frame may comprised of multiple chunks chunks = [] while True: tag = TupleTag(self.fp.read_tag()) if n == stop_at or int(tag) == SequenceDelimiterTag: break length = self.fp.read_UL() chunks.append(self.fp.read(length)) n += 8 + length frame_bytes = b"".join(chunks) decoded_frame_array = self._decode_frame( value=frame_bytes, rows=self.metadata.Rows, columns=self.metadata.Columns, samples_per_pixel=self.metadata.SamplesPerPixel, transfer_syntax_uid=self.metadata.file_meta.TransferSyntaxUID, ) return decoded_frame_array @staticmethod def _decode_frame( value, transfer_syntax_uid, rows, columns, samples_per_pixel, photometric_interpretation="RGB", ): """ Decodes the data of an individual frame. The pydicom library does currently not support reading individual frames. This solution inspired from HighDICOM creates a small dataset for the individual frame which can then be decoded using pydicom API. Args: value (bytes): Pixel data of a frame transfer_syntax_uid (str): Transfer Syntax UID rows (int): Number of pixel rows in the frame columns (int): Number of pixel columns in the frame samples_per_pixel (int): Number of samples per pixel photometric_interpretation (str): Photometric interpretation --currently only supporting RGB Returns: np.ndarray: decoded pixel data """ filemetadata = Dataset() filemetadata.TransferSyntaxUID = transfer_syntax_uid dataset = Dataset() dataset.file_meta = filemetadata dataset.Rows = rows dataset.Columns = columns dataset.SamplesPerPixel = samples_per_pixel dataset.PhotometricInterpretation = photometric_interpretation image = Image.open(BytesIO(value)) return np.asarray(image) def generate_tiles(self, shape, stride, pad, level=0, **kwargs): """ Generator over tiles. For DICOMBackend, each tile corresponds to a frame. Args: shape (int or tuple(int)): Size of each tile. May be a tuple of (height, width) or a single integer, in which case square tiles of that size are generated. Must match frame size. stride (int): Ignored for DICOMBackend. Frames are yielded individually. pad (bool): How to handle tiles on the edges. If ``True``, these edge tiles will be zero-padded and yielded with the other chunks. If ``False``, incomplete edge chunks will be ignored. Defaults to ``False``. Yields: pathml.core.tile.Tile: Extracted Tile object """ assert level == 0 or level is None, "dicom does not support levels" for i in range(self.n_frames): if not pad: # skip frame if it's in the last column if i % self.n_cols == (self.n_cols - 1): continue # skip frame if it's in the last row if i >= (self.n_frames - self.n_cols): continue frame_im = self.extract_region(location=i) coords = self._index_to_coords(i) frame_tile = pathml.core.tile.Tile(image=frame_im, coords=coords) yield frame_tile