""" Copyright 2021, Dana-Farber Cancer Institute and Weill Cornell Medicine License: GNU GPL 2.0 """ import reprlib from collections import OrderedDict import anndata import h5py import matplotlib.pyplot as plt import numpy as np import pathml.core.masks class Tile: """ Object representing a tile extracted from an image. Holds the array for the tile, as well as the (i,j) coordinates of the top-left corner of the tile in the original image. The (i,j) coordinate system is based on labelling the top-leftmost pixel as (0, 0) Args: image (np.ndarray): Image array of tile coords (tuple): Coordinates of tile relative to the whole-slide image. The (i,j) coordinate system is based on labelling the top-leftmost pixel of the WSI as (0, 0). name (str, optional): Name of tile masks (dict): masks belonging to tile. If masks are supplied, all masks must be the same shape as the tile. labels: labels belonging to tile counts (AnnData): counts matrix for the tile. slide_type (pathml.core.SlideType, optional): slide type specification. Must be a :class:`~pathml.core.SlideType` object. Alternatively, slide type can be specified by using the parameters ``stain``, ``tma``, ``rgb``, ``volumetric``, and ``time_series``. stain (str, optional): Flag indicating type of slide stain. Must be one of [‘HE’, ‘IHC’, ‘Fluor’]. Defaults to ``None``. Ignored if ``slide_type`` is specified. tma (bool, optional): Flag indicating whether the image is a tissue microarray (TMA). Defaults to ``False``. Ignored if ``slide_type`` is specified. rgb (bool, optional): Flag indicating whether the image is in RGB color. Defaults to ``None``. Ignored if ``slide_type`` is specified. volumetric (bool, optional): Flag indicating whether the image is volumetric. Defaults to ``None``. Ignored if ``slide_type`` is specified. time_series (bool, optional): Flag indicating whether the image is a time series. Defaults to ``None``. Ignored if ``slide_type`` is specified. """ def __init__( self, image, coords, name=None, masks=None, labels=None, counts=None, slide_type=None, stain=None, tma=None, rgb=None, volumetric=None, time_series=None, ): # check inputs assert isinstance( image, np.ndarray ), f"image of type {type(image)} must be a np.ndarray" assert masks is None or isinstance( masks, dict ), f"masks is of type {type(masks)} but must be of type dict" assert isinstance(coords, tuple), "coords must be a tuple e.g. (i, j)" assert labels is None or isinstance( labels, dict ), f"labels is of type {type(labels)} but must be of type dict or None" if labels: assert all( [isinstance(key, str) for key in labels.keys()] ), f"Input label keys are of types {[type(k) for k in labels.keys()]}. All label keys must be of type str." assert all( [ isinstance(val, (str, np.ndarray)) or np.issubdtype(type(val), np.number) or np.issubdtype(type(val), np.bool_) for val in labels.values() ] ), ( f"Input label vals are of types {[type(v) for v in labels.values()]}. " f"All label values must be of type str or np.ndarray or a number (i.e. a subdtype of np.number) " ) assert ( name != "None" and name != 0 ), "Cannot use values of '0' or 'None' as tile names" assert name is None or isinstance( name, str ), f"name is of type {type(name)} but must be of type str or None" assert slide_type is None or isinstance( slide_type, (pathml.core.SlideType, h5py._hl.group.Group) ), f"slide_type is of type {type(slide_type)} but must be of type pathml.core.types.SlideType" # instantiate SlideType object if needed if not slide_type and any([stain, tma, rgb, volumetric, time_series]): stain_type_dict = { "stain": stain, "tma": tma, "rgb": rgb, "volumetric": volumetric, "time_series": time_series, } # remove any Nones stain_type_dict = {key: val for key, val in stain_type_dict.items() if val} if stain_type_dict: slide_type = pathml.core.slide_types.SlideType(**stain_type_dict) assert counts is None or isinstance( counts, anndata.AnnData ), f"counts is of type {type(counts)} but must be of type anndata.AnnData or None" if masks: for val in masks.values(): if val.shape[:2] != image.shape[:2]: raise ValueError( f"mask is of shape {val.shape} but must match tile shape {image.shape}" ) self.masks = masks else: self.masks = OrderedDict() self.image = image self.name = name self.coords = coords self.slide_type = slide_type self.labels = labels self.counts = counts def __repr__(self): out = [] out.append(f"Tile(coords={self.coords}") out.append(f"name={self.name}") out.append(f"image shape: {self.image.shape}") out.append(f"slide_type={repr(self.slide_type)}") if self.labels: out.append( f"{len(self.labels)} labels: {reprlib.repr(list(self.labels.keys()))}" ) else: out.append("labels=None") if self.masks: out.append( f"{len(self.masks)} masks: {reprlib.repr(list(self.masks.keys()))}" ) else: out.append("masks=None") if self.counts: out.append(f"counts matrix of shape {self.counts.shape}") else: out.append("counts=None") out = ",\n\t".join(out) out += ")" return out def plot(self, ax=None): """ View the tile image, using matplotlib. Only supports RGB images currently Args: ax: matplotlib axis object on which to plot the thumbnail. Optional. """ if self.image.shape[2] != 3 or self.image.ndim != 3: raise NotImplementedError( f"Plotting not supported for tile with image of shape {self.image.shape}" ) if ax is None: ax = plt.gca() ax.imshow(self.image) if self.name: ax.set_title(self.name) ax.axis("off") @property def shape(self): """ convenience method. Calling ``tile.shape`` is equivalent to calling ``tile.image.shape`` """ return self.image.shape