""" Copyright 2021, Dana-Farber Cancer Institute and Weill Cornell Medicine License: GNU GPL 2.0 """ import importlib import torch import torch.nn as nn from torch_geometric.nn.pool import global_mean_pool class GNNLayer(nn.Module): """ GNN layer for processing graph structures. Args: layer (str): Type of torch_geometric GNN layer to be used. See https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#convolutional-layers for all available options. in_channels (int): Number of input features supplied to the model. hidden_channels (int): Number of hidden channels used in each layer of the GNN model. num_layers (int): Number of message-passing layers in the model. out_channels (int): Number of output features returned by the model. readout_op (str): Readout operation to summarize features from each layer. Supports 'lstm' and 'concat'. readout_type (str): Type of readout to aggregate node embeddings. Supports 'mean'. kwargs (dict): Extra layer-specific arguments. Must have required keyword arguments of layer from https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#convolutional-layers. """ def __init__( self, layer, in_channels, hidden_channels, num_layers, out_channels, readout_op, readout_type, kwargs, ): super().__init__() self.convs = nn.ModuleList() self.batch_norms = nn.ModuleList() self.readout_type = readout_type self.readout_op = readout_op # Import user-specified GNN layer from pytorch-geometric conv_module = importlib.import_module("torch_geometric.nn.conv") module = getattr(conv_module, layer) # Make multi-layered GNN using imported GNN layer self.convs.append(module(in_channels, hidden_channels, **kwargs)) self.batch_norms.append(nn.BatchNorm1d(hidden_channels)) for _ in range(1, num_layers - 1): conv = module(hidden_channels, hidden_channels, **kwargs) self.convs.append(conv) self.batch_norms.append(nn.BatchNorm1d(hidden_channels)) self.convs.append(module(hidden_channels, out_channels, **kwargs)) self.batch_norms.append(nn.BatchNorm1d(out_channels)) # Define readout operation if using LSTM readout if readout_op == "lstm": self.lstm = nn.LSTM( out_channels, (num_layers * out_channels) // 2, bidirectional=True, batch_first=True, ) self.att = nn.Linear(2 * ((num_layers * out_channels) // 2), 1) def forward(self, x, edge_index, batch, with_readout=True): h = [] x = x.float() for norm, conv in zip(self.batch_norms, self.convs): x = conv(x, edge_index) x = norm(x) h.append(x) if self.readout_op == "concat": out = torch.cat(h, dim=-1) elif self.readout_op == "lstm": x = torch.stack(h, dim=1) alpha, _ = self.lstm(x) alpha = self.att(alpha).squeeze(-1) alpha = torch.softmax(alpha, dim=-1) out = (x * alpha.unsqueeze(-1)).sum(dim=1) else: out = h[-1] if with_readout: if self.readout_type == "mean": out = global_mean_pool(out, batch) return out