""" Copyright 2021, Dana-Farber Cancer Institute and Weill Cornell Medicine License: GNU GPL 2.0 """ import torch import torch.nn as nn from torch_geometric.nn.models import MLP from pathml.ml.layers import GNNLayer from pathml.ml.utils import scatter_sum class HACTNet(nn.Module): """ Hierarchical cell-to-tissue model for supervised prediction using cell and tissue graphs. Args: cell_params (dict): Dictionary containing parameters for cell graph GNN. tissue_params (dict): Dictionary containing parameters for tissue graph GNN. classifier_params (dict): Dictionary containing parameters for prediction MLP. References: Pati, P., Jaume, G., Foncubierta-Rodriguez, A., Feroce, F., Anniciello, A.M., Scognamiglio, G., Brancati, N., Fiche, M., Dubruc, E., Riccio, D. and Di Bonito, M., 2022. Hierarchical graph representations in digital pathology. Medical image analysis, 75, p.102264. """ def __init__(self, cell_params, tissue_params, classifier_params): super().__init__() # Get cell and tissue graph readout operations self.cell_readout_op = cell_params["readout_op"] self.tissue_readout_op = tissue_params["readout_op"] # Modify tissue GNN parameters if self.cell_readout_op == "concat": tissue_params["in_channels"] = ( tissue_params["in_channels"] + cell_params["out_channels"] * cell_params["num_layers"] ) else: tissue_params["in_channels"] = ( tissue_params["in_channels"] + cell_params["out_channels"] ) # Main GNN model for cell and tissue graphs self.cell_gnn = GNNLayer(**cell_params) self.tissue_gnn = GNNLayer(**tissue_params) # Modify classifier parameters if self.tissue_readout_op == "concat": classifier_params["in_channels"] = ( tissue_params["out_channels"] * tissue_params["num_layers"] ) else: classifier_params["in_channels"] = tissue_params["out_channels"] # Main classifier head self.classifier = MLP(**classifier_params) def forward(self, batch): x_cell = batch.x_cell x_tissue = batch.x_tissue z_cell = self.cell_gnn( x_cell, batch.edge_index_cell, batch.x_cell_batch, with_readout=False ) out = torch.zeros( (x_tissue.shape[0], z_cell.shape[1]), dtype=z_cell.dtype, device=z_cell.device, ) z_cell_to_tissue = scatter_sum(z_cell, batch.assignment, dim=0, out=out) x_tissue = torch.cat((z_cell_to_tissue, x_tissue), dim=1) z_tissue = self.tissue_gnn( x_tissue, batch.edge_index_tissue, batch.x_tissue_batch ) out = self.classifier(z_tissue) return out