""" Copyright 2021, Dana-Farber Cancer Institute and Weill Cornell Medicine License: GNU GPL 2.0 """ import numpy as np def extract_tiles(arr, tile_size, stride=None): """ Extract tiles from an array. Allows user to specify stride between tiles. Based on original implementation in ``sklearn.feature_extraction.image_ref._extract_patches`` Incomplete tiles on the edge are dropped (TO DO: fix this (zero padding?)) Args: arr (np.ndarray): input array. Must be 3 dimensional (H, W, n_channels) tile_size (int): Dimension of extracted tiles. Each tile will be shape (tile_size, tile_size, n_channels) stride (int, optional): Stride length between tiles. If ``None``, uses ``stride = tile_size`` for non-overlapping tiles. Defaults to None Returns: np.ndarray: Array of extracted tiles of shape `(n_tiles, tile_size, tile_size, n_channels)` """ assert arr.ndim == 3, f"Number of input dimensions {arr.ndim} must be 3" if stride is None: stride = tile_size i, j, n_channels = arr.shape if (i - tile_size) % stride != 0 or (j - tile_size) % stride != 0: raise NotImplementedError( f"Array of shape {arr.shape} is not perfectly tiled by tiles of size {tile_size} and stride {stride}." ) patch_strides = arr.strides patch_shape = (tile_size, tile_size, n_channels) extraction_step = (stride, stride, 1) slices = tuple(slice(None, None, st) for st in extraction_step) indexing_strides = arr[slices].strides patch_indices_shape = ( (np.array(arr.shape) - np.array(patch_shape)) // np.array(extraction_step) ) + 1 shape = tuple(list(patch_indices_shape) + list(patch_shape)) strides = tuple(list(indexing_strides) + list(patch_strides)) tiles = np.lib.stride_tricks.as_strided(arr, shape=shape, strides=strides) # squeeze out unnecessary axis tiles = tiles.squeeze(axis=2) tiles = tiles.reshape(-1, *tiles.shape[2:]) return tiles def extract_tiles_with_mask(arr, mask, tile_size, stride=None, threshold=0.5): """ Generate tiles and only keep tiles that overlap with the masks above some threshold. Args: arr (np.ndarray): input array. Must be 3 dimensional (H, W, n_channels) mask (np.ndarray): array of masks. Must be 3 dimensional (H, W, n_masks). tile_size (int): Dimension of extracted tiles. Each tile will be shape (tile_size, tile_size, n_channels) stride (int, optional): Stride length between tiles. If ``None``, uses ``stride = tile_size`` for non-overlapping tiles. Defaults to None threshold (float): for each tile, all values in the corresponding mask region will be averaged. `threshold` is the cutoff value, above which the tile will be kept and below which the tile will be discarded. Defaults to 0.5 Returns: np.ndarray: Array of extracted tiles of shape `(n_tiles, tile_size, tile_size, n_channels)` """ # check inputs here assert isinstance( mask, np.ndarray ), f"Input mask type {type(mask)} must be a numpy array" assert isinstance( arr, np.ndarray ), f"input array type {type(arr)} must be a numpy array" assert arr.ndim == 3, f"array of shape {arr.shape} must be 3 dimensional" assert mask.ndim == 3, f"mask of shape {mask.shape} must be 3 dimensional" assert ( arr.shape[0:2] == mask.shape[0:2] ), f"Dims of input image_ref {arr.shape} and mask {mask.shape} must match" arr_tiles = extract_tiles(arr, tile_size=tile_size, stride=stride) mask_tiles = extract_tiles(mask, tile_size=tile_size, stride=stride) tile_mask_means = mask_tiles.mean(axis=tuple(range(1, mask_tiles.ndim))) out = arr_tiles[tile_mask_means >= threshold, ...] return out # TODO: do we need to have coords for each tile?