""" Copyright 2021, Dana-Farber Cancer Institute and Weill Cornell Medicine License: GNU GPL 2.0 """ import copy import numpy as np from pathml.core import HESlide from pathml.preprocessing.pipeline import Pipeline def test_h5manager(example_slide_data): """ See issue #181. """ pipe = Pipeline([]) example_slide_data.run(pipe, distributed=False, tile_size=200) for tile in example_slide_data.tiles: assert np.count_nonzero(tile.image) > 0 def test_h5manager2(tileHE): slidedata1 = HESlide("tests/testdata/small_HE.svs") slidedata2 = HESlide("tests/testdata/small_HE.svs") tiles1 = slidedata1.tiles tiles2 = slidedata2.tiles coordslist = [(0, 0), (0, 500), (0, 0)] for coord in coordslist[0:2]: tile = copy.deepcopy(tileHE) tile.coords = coord tiles1.add(tile) for coord in coordslist: tile = copy.deepcopy(tileHE) tile.coords = coord tiles2.add(tile) for tile1, tile2 in zip(tiles1, tiles2): np.testing.assert_array_equal(tile1.image, tile2.image) def test_tile_dtype_HE(tileHE): """make sure that retrieved tiles and corresponding masks are float16""" slidedata = HESlide("tests/testdata/small_HE.svs") slidedata.tiles.add(tileHE) tile_retrieved = slidedata.tiles[tileHE.coords] assert tile_retrieved.image.dtype == np.float16 assert tile_retrieved.masks["testmask"].dtype == np.float16 def test_tile_dtype_IF(tileVectra, vectra_slide): """make sure that retrieved tiles and corresponding masks are float16""" vectra_slide.tiles.add(tileVectra) tile_retrieved = vectra_slide.tiles[tileVectra.coords] assert tile_retrieved.image.dtype == np.float16 assert tile_retrieved.masks["testmask"].dtype == np.float16