""" Copyright 2021, Dana-Farber Cancer Institute and Weill Cornell Medicine License: GNU GPL 2.0 """ import numpy as np import pytest from pathml.core import HESlide, Tile, types @pytest.fixture def emptytiles(): slidedata = HESlide("tests/testdata/small_HE.svs") return slidedata.tiles @pytest.fixture def tiles(): """ dict of adjacent tiles """ tiles = [] for i in range(2): for j in range(2): # create tile shape = (224, 224, 3) coords = (224 * i, 224 * j) name = f"{i}_{j}" masks = {str(k): np.random.randint(2, size=shape) for k in range(2)} labs = { "test_string_label": "testlabel", "test_array_label": np.array([2, 3, 4]), "test_int_label": 3, "test_float_label": 3.0, } image = np.random.random_sample(shape) tile = Tile( image=image, name=name, coords=coords, slide_type=types.HE, masks=masks, labels=labs, ) # add to dict tiles.append(tile) return tiles @pytest.fixture def tilesnonconsecutive(): """ dict of nonconsecutive tiles """ tiles = [] for i in range(2): for j in range(2): # create tile shape = (224, 224, 3) coords = (224 * 2 * (i + 1), 224 * 2 * (j + 2)) name = f"{i}_{j}" masks = {str(k): np.random.randint(2, size=shape) for k in range(2)} labs = { "test_string_label": "testlabel", "test_array_label": np.array([2, 3, 4]), "test_int_label": 3, "test_float_label": 3.0, } image = np.random.randint(low=0, high=255, size=shape, dtype=np.uint8) tile = Tile( image=image, name=name, coords=coords, slide_type=types.HE, masks=masks, labels=labs, ) # add to dict tiles.append(tile) return tiles @pytest.mark.parametrize( "incorrect_input", ["string", True, 5, [5, 4, 3], {"dict": "testing"}] ) def test_init(tiles, tilesnonconsecutive, incorrect_input): # init from dict slidedata = HESlide("tests/testdata/small_HE.svs", tiles=tiles) assert (slidedata.tiles[0].image == tiles[0].image.astype(np.float16)).all() # init len assert len(slidedata.tiles) == 4 # incorrect input with pytest.raises(AssertionError): # fix obj slidedata = HESlide("tests/testdata/small_HE.svs", tiles=incorrect_input) # nonconsecutive tiles slidedata = HESlide("tests/testdata/small_HE.svs", tiles=tilesnonconsecutive) np.testing.assert_array_equal( slidedata.tiles[(896, 1344)].image, tilesnonconsecutive[3].image ) def test_repr(tiles): slidedata = HESlide("tests/testdata/small_HE.svs", tiles=tiles) assert repr(slidedata.tiles) @pytest.mark.parametrize( "incorrect_input", ["string", None, True, 5, [5, 4, 3], {"dict": "testing"}] ) @pytest.mark.parametrize( "incorrect_input2", [None, True, [5, 4, 3], {"dict": "testing"}] ) def test_add_get(emptytiles, tileHE, incorrect_input, incorrect_input2): # add single tile tiles = emptytiles tiles.add(tileHE) # get by coords and by index assert (tiles[(1, 3)].image == tileHE.image).all() assert (tiles[0].image == tileHE.image).all() assert tiles[(1, 3)].name == tileHE.name assert tiles[(1, 3)].coords == tileHE.coords for label in tiles[(1, 3)].labels: if isinstance(tiles[(1, 3)].labels[label], np.ndarray): np.testing.assert_array_equal( tiles[(1, 3)].labels[label], tileHE.labels[label] ) else: assert tiles[(1, 3)].labels[label] == tileHE.labels[label] assert tiles[(1, 3)].slide_type == tileHE.slide_type # get masks for mask in tiles.h5manager.h5["masks"].keys(): # masks by coords and by index assert (tiles[(1, 3)].masks[mask] == tileHE.masks[mask]).all() assert (tiles[0].masks[mask] == tileHE.masks[mask]).all() # incorrect input with pytest.raises(ValueError or KeyError): tiles.add(incorrect_input) with pytest.raises(KeyError or IndexError): tiles[incorrect_input2] # wrong shape im = np.arange(np.product((225, 224, 3))).reshape((225, 224, 3)) wrongshapetile = Tile(image=im, coords=(4, 5), name="wrong") with pytest.raises(ValueError): tiles.add(wrongshapetile) @pytest.mark.parametrize( "incorrect_input", ["string", None, True, 5, [5, 4, 3], {"dict": "testing"}] ) def test_remove(emptytiles, tileHE, incorrect_input): tiles = emptytiles tiles.add(tileHE) tiles.remove((1, 3)) with pytest.raises(Exception): tiles[(1, 3)] with pytest.raises(KeyError): tiles.remove((1, 3)) # incorrect input with pytest.raises(KeyError): tiles.remove(incorrect_input)