""" Copyright 2021, Dana-Farber Cancer Institute and Weill Cornell Medicine License: GNU GPL 2.0 """ import importlib.util import numpy as np import pytest import torch.nn as nn import torch.nn.functional as F from skimage.draw import ellipse from skimage.measure import label, regionprops from pathml.datasets.utils import DeepPatchFeatureExtractor def requires_torchvision(func): """Decorator to skip tests that require torchvision.""" torchvision_installed = importlib.util.find_spec("torchvision") is not None reason = "torchvision is required" return pytest.mark.skipif(not torchvision_installed, reason=reason)(func) class SimpleCNN(nn.Module): def __init__(self, input_shape): super(SimpleCNN, self).__init__() self.conv1 = nn.Conv2d( in_channels=input_shape[0], out_channels=32, kernel_size=3, stride=1, padding=1, ) self.conv2 = nn.Conv2d( in_channels=32, out_channels=64, kernel_size=3, stride=1, padding=1 ) self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0) fc_input_size = (input_shape[1] // 4) * (input_shape[2] // 4) * 64 self.fc1 = nn.Linear(fc_input_size, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) # Flatten the output for the fully connected layer x = x.view(x.size(0), -1) x = F.relu(self.fc1(x)) x = self.fc2(x) return x def make_fake_instance_maps(num, image_size, ellipse_height, ellipse_width): img = np.zeros(image_size) # Draw n ellipses for i in range(num): # Random center for each ellipse center_x = np.random.randint(ellipse_width, image_size[1] - ellipse_width) center_y = np.random.randint(ellipse_height, image_size[0] - ellipse_height) # Coordinates for the ellipse rr, cc = ellipse( center_y, center_x, ellipse_height, ellipse_width, shape=image_size ) # Draw the ellipse img[rr, cc] = 1 label_img = label(img.astype(int)) return label_img def make_fake_image(instance_map): image = instance_map[:, :, None] image[image > 0] = 1 noised_image = ( np.random.rand(instance_map.shape[0], instance_map.shape[1], 3) * 0.15 + image ) * 255 return noised_image.astype("uint8") @pytest.mark.parametrize("patch_size", [1, 64, 128]) @pytest.mark.parametrize("entity", ["cell", "tissue"]) @pytest.mark.parametrize("threshold", [0, 0.1, 0.8]) @pytest.mark.parametrize("with_instance_masking", [True, False]) @pytest.mark.parametrize("extraction_layer", [None, "fc1"]) def test_feature_extractor( entity, patch_size, threshold, with_instance_masking, extraction_layer ): image_size = (256, 256) instance_map = make_fake_instance_maps( num=20, image_size=image_size, ellipse_height=20, ellipse_width=8 ) image = make_fake_image(instance_map.copy()) regions = regionprops(instance_map) model = SimpleCNN(input_shape=(3, 224, 224)) extractor = DeepPatchFeatureExtractor( patch_size=patch_size, batch_size=1, entity=entity, architecture=model, fill_value=255, resize_size=224, threshold=threshold, with_instance_masking=with_instance_masking, extraction_layer=extraction_layer, ) features = extractor.process(image, instance_map) if threshold == 0: assert features.shape[0] == len(regions) else: assert features.shape[0] <= len(regions) @requires_torchvision @pytest.mark.parametrize("patch_size", [1, 64, 128]) @pytest.mark.parametrize("entity", ["cell", "tissue"]) @pytest.mark.parametrize("threshold", [0, 0.1, 0.8]) @pytest.mark.parametrize("extraction_layer", [None, "fc"]) def test_feature_extractor_torchvision(entity, patch_size, threshold, extraction_layer): # pytest.importorskip("torchvision") image_size = (256, 256) instance_map = make_fake_instance_maps( num=20, image_size=image_size, ellipse_height=20, ellipse_width=8 ) image = make_fake_image(instance_map.copy()) regions = regionprops(instance_map) extractor = DeepPatchFeatureExtractor( patch_size=patch_size, batch_size=1, entity=entity, architecture="resnet34", fill_value=255, resize_size=224, threshold=threshold, extraction_layer=extraction_layer, ) features = extractor.process(image, instance_map) if threshold == 0: assert features.shape[0] == len(regions) else: assert features.shape[0] <= len(regions) @requires_torchvision @pytest.mark.parametrize("patch_size", [64, 128]) @pytest.mark.parametrize("entity", ["cell", "tissue"]) @pytest.mark.parametrize("threshold", [0.8]) @pytest.mark.parametrize("extraction_layer", [None, "12"]) def test_feature_extractor_torchvision_no_resnet( entity, patch_size, threshold, extraction_layer ): # pytest.importorskip("torchvision") image_size = (256, 256) instance_map = make_fake_instance_maps( num=20, image_size=image_size, ellipse_height=20, ellipse_width=8 ) image = make_fake_image(instance_map.copy()) regions = regionprops(instance_map) extractor = DeepPatchFeatureExtractor( patch_size=patch_size, batch_size=1, entity=entity, architecture="mobilenet_v3_small", fill_value=255, resize_size=224, threshold=threshold, extraction_layer=extraction_layer, ) features = extractor.process(image, instance_map) if threshold == 0: assert features.shape[0] == len(regions) else: assert features.shape[0] <= len(regions)