""" Copyright 2021, Dana-Farber Cancer Institute and Weill Cornell Medicine License: GNU GPL 2.0 """ import numpy as np import pytest import torch from skimage.draw import ellipse from skimage.measure import label from torch_geometric.loader import DataLoader import pathml from pathml.core import SlideData from pathml.graph import Graph, HACTPairData, build_assignment_matrix from pathml.graph.utils import get_full_instance_map from pathml.preprocessing import Pipeline from pathml.preprocessing.transforms import Transform @pytest.mark.parametrize("batch_size", [1, 8, 32]) @pytest.mark.parametrize("include_target", [True, False]) def test_pathml_graph(batch_size, include_target): edge_index = torch.tensor([[0, 1, 1, 2], [1, 0, 2, 1]], dtype=torch.long) node_centroids = torch.randn(3, 2) node_features = torch.randn(3, 2) if include_target: target = torch.tensor([1]) graph_obj = Graph( edge_index=edge_index, node_centroids=node_centroids, node_features=node_features, target=target if include_target else None, ) loader = DataLoader([graph_obj] * batch_size, batch_size=batch_size) batch = next(iter(loader)) assert batch.node_centroids.shape == (batch_size * 3, 2) assert batch.node_features.shape == (batch_size * 3, 2) assert batch.edge_index.shape == (2, batch_size * 4) assert batch.batch.shape == (batch_size * 3,) @pytest.mark.parametrize("batch_size", [1, 8, 32]) def test_pathml_hactnet_graph(batch_size): edge_index = torch.tensor([[0, 1, 1, 2], [1, 0, 2, 1]], dtype=torch.long) node_features = torch.randn(3, 2) x_cell = node_features edge_index_cell = edge_index x_tissue = node_features edge_index_tissue = edge_index assignment = edge_index target = torch.tensor([2]) graph_obj = HACTPairData( x_cell=x_cell, edge_index_cell=edge_index_cell, x_tissue=x_tissue, edge_index_tissue=edge_index_tissue, assignment=assignment, target=target, ) loader = DataLoader([graph_obj] * batch_size, batch_size=batch_size) batch = next(iter(loader)) assert batch.x_cell.shape == (batch_size * 3, 2) assert batch.x_tissue.shape == (batch_size * 3, 2) assert batch.edge_index_cell.shape == (2, batch_size * 4) assert batch.edge_index_tissue.shape == (2, batch_size * 4) def make_fake_instance_maps(num, image_size, ellipse_height, ellipse_width): img = np.zeros(image_size) # Draw n ellipses for i in range(num): # Random center for each ellipse center_x = np.random.randint(ellipse_width, image_size[1] - ellipse_width) center_y = np.random.randint(ellipse_height, image_size[0] - ellipse_height) # Coordinates for the ellipse rr, cc = ellipse( center_y, center_x, ellipse_height, ellipse_width, shape=image_size ) # Draw the ellipse img[rr, cc] = 1 label_img = label(img.astype(int)) return label_img @pytest.mark.parametrize("matrix", [True, False]) def test_build_assignment_matrix(matrix): image_size = (1024, 2048) tissue_instance_map = make_fake_instance_maps( num=20, image_size=image_size, ellipse_height=20, ellipse_width=8 ) cell_centroids = np.random.rand(200, 2) assignment = build_assignment_matrix( cell_centroids, tissue_instance_map, matrix=matrix ) if matrix: assert assignment.shape[0] == 200 else: assert assignment.shape[1] == 200 class DummyTransform(Transform): def __init__( self, mask_name, ): self.mask_name = mask_name def F(self, image): return image[:, :, 0] def apply(self, tile): assert isinstance( tile, pathml.core.tile.Tile ), f"tile is type {type(tile)} but must be pathml.core.tile.Tile" nucleus_mask = self.F(tile.image) tile.masks[self.mask_name] = nucleus_mask @pytest.mark.parametrize("mask_name", ["test"]) def test_instance_map(mask_name): image_path = "tests/testdata/small_HE.svs" wsi = SlideData(image_path, name=image_path, backend="openslide", stain="HE") pipeline = Pipeline([DummyTransform(mask_name)]) wsi.run( pipeline, overwrite_existing_tiles=True, distributed=False, tile_pad=True, tile_size=1024, ) image_norm, label_instance_map, instance_centroids = get_full_instance_map( wsi, patch_size=1024, mask_name="test" ) assert image_norm.shape == (wsi.shape[0], wsi.shape[1], 3) assert label_instance_map.shape == (wsi.shape[0], wsi.shape[1]) assert instance_centroids.shape[1] == 2