""" Copyright 2021, Dana-Farber Cancer Institute and Weill Cornell Medicine License: GNU GPL 2.0 """ import numpy as np import pytest from skimage.draw import ellipse from skimage.measure import label from pathml.graph import ColorMergedSuperpixelExtractor from pathml.graph.preprocessing import SLICSuperpixelExtractor def make_fake_instance_maps(num, image_size, ellipse_height, ellipse_width): img = np.zeros(image_size) # Draw n ellipses for i in range(num): # Random center for each ellipse center_x = np.random.randint(ellipse_width, image_size[1] - ellipse_width) center_y = np.random.randint(ellipse_height, image_size[0] - ellipse_height) # Coordinates for the ellipse rr, cc = ellipse( center_y, center_x, ellipse_height, ellipse_width, shape=image_size ) # Draw the ellipse img[rr, cc] = 1 label_img = label(img.astype(int)) return label_img def make_fake_image(instance_map): image = instance_map[:, :, None] image[image > 0] = 1 noised_image = ( np.random.rand(instance_map.shape[0], instance_map.shape[1], 3) * 0.15 + image ) * 255 return noised_image.astype("uint8") @pytest.mark.parametrize("superpixel_size", [20, 200]) @pytest.mark.parametrize("compactness", [50, 100]) @pytest.mark.parametrize("blur_kernel_size", [0.2, 1]) @pytest.mark.parametrize("threshold", [0.1, 0.9]) @pytest.mark.parametrize("downsampling_factor", [4, 10]) @pytest.mark.parametrize( "extractor", [ColorMergedSuperpixelExtractor, SLICSuperpixelExtractor] ) def test_tissue_extractors( superpixel_size, compactness, blur_kernel_size, threshold, downsampling_factor, extractor, ): image_size = (256, 256) instance_map = make_fake_instance_maps( num=30, image_size=image_size, ellipse_height=20, ellipse_width=8 ) image = make_fake_image(instance_map.copy()) tissue_detector = extractor( superpixel_size=superpixel_size, compactness=compactness, blur_kernel_size=blur_kernel_size, threshold=threshold, downsampling_factor=downsampling_factor, ) superpixels = tissue_detector.process(image) if isinstance(superpixels, tuple): superpixels = superpixels[0] assert superpixels.shape == image_size