""" Copyright 2021, Dana-Farber Cancer Institute and Weill Cornell Medicine License: GNU GPL 2.0 """ import numpy as np import pytest from pathml.preprocessing.tiling import extract_tiles, extract_tiles_with_mask @pytest.mark.parametrize("tile_size", [5, 20]) @pytest.mark.parametrize("stride", [None, 1, 5]) @pytest.mark.parametrize("n_channels", [1, 3, 11]) def test_extract_tiles(n_channels, stride, tile_size): # square arr_size = 100 arr = np.arange(arr_size * arr_size * n_channels).reshape( (arr_size, arr_size, n_channels) ) tiled = extract_tiles(arr, tile_size=tile_size, stride=stride) if stride is None: stride = tile_size n_tiles_expected = 1 + (arr_size - tile_size) / stride assert tiled.shape == (n_tiles_expected**2, tile_size, tile_size, n_channels) assert np.array_equal(tiled[0, ...], arr[0:tile_size, 0:tile_size, :]) @pytest.mark.parametrize("stride", [None, 5]) @pytest.mark.parametrize("n_channels_arr", [3]) @pytest.mark.parametrize("n_channels_mask", [5]) @pytest.mark.parametrize("tile_size", [5, 10, 25]) def test_extract_tiles_with_mask(n_channels_arr, n_channels_mask, stride, tile_size): arr_size = 100 arr = np.arange(arr_size * arr_size * n_channels_arr).reshape( (arr_size, arr_size, n_channels_arr) ) mask = np.zeros(shape=(arr_size, arr_size, n_channels_mask), dtype=np.uint8) mask[0:25, 0:25, ...] = 1 tiled = extract_tiles_with_mask( arr, mask=mask, tile_size=tile_size, stride=stride, threshold=0.99 ) if stride is None: stride = tile_size # since the mask only has ones from [0:25, 0:25] # and we set a high threshold (almost 1) # n_expected should be the same as if we only tiled a (25 x 25) array n_tiles_expected = 1 + (25 - tile_size) // stride assert tiled.shape == (n_tiles_expected**2, tile_size, tile_size, n_channels_arr)