""" Copyright 2021, Dana-Farber Cancer Institute and Weill Cornell Medicine License: GNU GPL 2.0 """ import numpy as np import pytest from pathml.core import Tile from pathml.preprocessing import ( AdaptiveHistogramEqualization, BinaryThreshold, BoxBlur, CollapseRunsCODEX, CollapseRunsVectra, ForegroundDetection, GaussianBlur, HistogramEqualization, LabelArtifactTileHE, LabelWhiteSpaceHE, MedianBlur, MorphClose, MorphOpen, NucleusDetectionHE, QuantifyMIF, RescaleIntensity, StainNormalizationHE, SuperpixelInterpolation, TissueDetectionHE, ) from pathml.utils import RGB_to_GREY @pytest.mark.parametrize("ksize", [3, 7, 21]) @pytest.mark.parametrize("transform", [MedianBlur, BoxBlur]) def test_median_box_blur(tileHE, ksize, transform): t = transform(kernel_size=ksize) orig_im = tileHE.image t.apply(tileHE) assert np.array_equal(tileHE.image, t.F(orig_im)) @pytest.mark.parametrize("ksize", [3, 7, 21]) @pytest.mark.parametrize("sigma", [0.1, 3, 0.999]) def test_gaussian_blur(tileHE, ksize, sigma): t = GaussianBlur(kernel_size=ksize, sigma=sigma) orig_im = tileHE.image t.apply(tileHE) assert np.array_equal(tileHE.image, t.F(orig_im)) @pytest.mark.parametrize("in_range", ["image", (0, 255), "dtype"]) @pytest.mark.parametrize("out_range", ["image", (0, 255), "dtype"]) def test_rescale_intensity(tileVectra, in_range, out_range): t = RescaleIntensity(in_range=in_range, out_range=out_range) orig_im = tileVectra.image t.apply(tileVectra) assert np.array_equal(tileVectra.image, t.F(orig_im)) @pytest.mark.parametrize("nbins", [120, 255, 500]) def test_histogram_equalization(tileVectra, nbins): t = HistogramEqualization(nbins=nbins) orig_im = tileVectra.image t.apply(tileVectra) assert np.array_equal(tileVectra.image, t.F(orig_im)) @pytest.mark.parametrize("clip_limit", [0.05, 0.1, 0.3]) @pytest.mark.parametrize("nbins", [120, 255, 500]) def test_adaptive_histogram_equalization(tileVectra, clip_limit, nbins): t = AdaptiveHistogramEqualization(clip_limit=clip_limit, nbins=nbins) vectra_collapse = CollapseRunsVectra() vectra_collapse.apply(tileVectra) orig_im = tileVectra.image t.apply(tileVectra) assert np.array_equal(tileVectra.image, t.F(orig_im)) @pytest.mark.parametrize("thresh", [0, 0.5, 200]) @pytest.mark.parametrize("otsu", [True, False]) def test_binary_thresholding(tileHE, thresh, otsu): t = BinaryThreshold(use_otsu=otsu, threshold=thresh, mask_name="testing") t.apply(tileHE) assert np.array_equal(tileHE.masks["testing"], t.F(RGB_to_GREY(tileHE.image))) @pytest.mark.parametrize("n_iter", [1, 3]) @pytest.mark.parametrize("ksize", [3, 21]) @pytest.mark.parametrize("transform", [MorphOpen, MorphClose]) def test_open_close(tileHE, transform, ksize, n_iter): t = transform(kernel_size=ksize, n_iterations=n_iter, mask_name="testmask") orig_mask = np.copy(tileHE.masks["testmask"]) m = t.F(orig_mask) t.apply(tileHE) assert np.array_equal(tileHE.masks["testmask"], m) @pytest.mark.parametrize("min_reg_size", [0, 10]) @pytest.mark.parametrize("max_hole_size", [0, 10]) @pytest.mark.parametrize("outer_contours_only", [True, False]) def test_foreground_detection(tileHE, min_reg_size, max_hole_size, outer_contours_only): t = ForegroundDetection( min_region_size=min_reg_size, max_hole_size=max_hole_size, outer_contours_only=outer_contours_only, mask_name="testmask", ) orig_mask = tileHE.masks["testmask"] t.apply(tileHE) assert np.array_equal(tileHE.masks["testmask"], t.F(orig_mask)) @pytest.mark.parametrize("n_iter", [1, 30]) @pytest.mark.parametrize("region_size", [10, 20]) def test_superpix_interp(tileHE, region_size, n_iter): t = SuperpixelInterpolation(region_size=region_size, n_iter=n_iter) orig_im = tileHE.image t.apply(tileHE) assert np.array_equal(tileHE.image, t.F(orig_im)) @pytest.mark.parametrize("target", ["normalize", "hematoxylin", "eosin"]) @pytest.mark.parametrize("method", ["vahadane", "macenko"]) def test_stain_normalization_he(tileHE, method, target): t = StainNormalizationHE(target=target, stain_estimation_method=method) orig_im = tileHE.image t.fit_to_reference(orig_im) assert t.stain_matrix_target_od.shape == (2, 3) @pytest.mark.parametrize("target", ["normalize", "hematoxylin", "eosin"]) @pytest.mark.parametrize("method", ["vahadane", "macenko"]) def test_stain_normalization_he_fit(tileHE, method, target): t = StainNormalizationHE(target=target, stain_estimation_method=method) orig_im = tileHE.image t.apply(tileHE) if method == "vahadane": # theres an element of randomness in vahadane implementation, haven't been able to figure # out how to set a seed assert tileHE.image.shape == t.F(orig_im).shape else: assert np.allclose(tileHE.image, t.F(orig_im)) def test_nuc_detectionHE(tileHE): t = NucleusDetectionHE(mask_name="testing", stain_estimation_method="macenko") orig_im = tileHE.image t.apply(tileHE) assert np.array_equal(tileHE.masks["testing"], t.F(orig_im)) @pytest.mark.parametrize("use_saturation", [True, False]) @pytest.mark.parametrize("threshold", [None, 100]) def test_tissue_detectionHE(tileHE, threshold, use_saturation): t = TissueDetectionHE( mask_name="testing", threshold=threshold, use_saturation=use_saturation ) orig_im = tileHE.image m = t.F(orig_im) t.apply(tileHE) assert np.array_equal(tileHE.masks["testing"], m) @pytest.mark.parametrize("transform", [LabelArtifactTileHE, LabelWhiteSpaceHE]) def test_binary_label_transforms(tileHE, transform): t = transform(label_name="test_label") t.apply(tileHE) assert tileHE.labels["test_label"] in [True, False] def test_segment_mif(tileVectra): from pathml.preprocessing.transforms import SegmentMIFRemote vectra_collapse = CollapseRunsVectra() vectra_collapse.apply(tileVectra) t = SegmentMIFRemote( nuclear_channel=0, cytoplasm_channel=1, postprocess_kwargs_nuclear={ "label_erosion": 10, "small_objects_threshold": 0.2, "fill_holes_threshold": 0.2, "pixel_expansion": 10, "maxima_algorithm": "peak_local_max", }, ) orig_im = tileVectra.image cell, nuclear = t.F(orig_im) t.apply(tileVectra) assert np.array_equal(tileVectra.masks["cell_segmentation"], cell) assert np.array_equal(tileVectra.masks["nuclear_segmentation"], nuclear) def test_quantify_mif(tileVectra): from pathml.preprocessing.transforms import SegmentMIFRemote t = QuantifyMIF("cell_segmentation") with pytest.raises(AssertionError): t.apply(tileVectra) t2 = SegmentMIFRemote(nuclear_channel=0, cytoplasm_channel=1) vectra_collapse = CollapseRunsVectra() vectra_collapse.apply(tileVectra) t2.apply(tileVectra) t.apply(tileVectra) assert tileVectra.counts def test_quantify_mif_coords(): # make sure that QuantifyMIF uses i,j coordinates # make fake im with a single region im = np.zeros(shape=(50, 50, 3)) seg = np.zeros(shape=(50, 50, 1), dtype=np.uint8) # add a region with known centroid at (i=27, j=7) == (x=7, y=27) seg[25:30, 5:10] = 1 tile = Tile(image=im, coords=(0, 0), masks={"seg": seg}, stain="Fluor") quantifymif = QuantifyMIF(segmentation_mask="seg") quantifymif.apply(tile) assert tile.counts.obs.x[0] == 7 assert tile.counts.obs.y[0] == 27 def test_collapse_runs_vectra(tileVectra): t = CollapseRunsVectra() orig_im = tileVectra.image m = t.F(orig_im) t.apply(tileVectra) assert np.array_equal(m, tileVectra.image) assert len(m.shape) == 3 @pytest.mark.parametrize( "transform", [ MedianBlur(), GaussianBlur(), BoxBlur(), BinaryThreshold(), MorphOpen(), MorphClose(), ForegroundDetection(), SuperpixelInterpolation(), StainNormalizationHE(), NucleusDetectionHE(), TissueDetectionHE(), LabelArtifactTileHE(), LabelWhiteSpaceHE(), QuantifyMIF(segmentation_mask="test"), CollapseRunsVectra(), CollapseRunsCODEX(z=0), AdaptiveHistogramEqualization(), HistogramEqualization(), RescaleIntensity(), ], ) def test_repr(transform): repr(transform) def test_segmentMIF_repr(): from pathml.preprocessing.transforms import SegmentMIFRemote repr(SegmentMIFRemote(nuclear_channel=0, cytoplasm_channel=1)) def test_collapse_runs_codex_repr(): z_value = 2 collapse_runs_codex = CollapseRunsCODEX(z=z_value) assert repr(collapse_runs_codex) == f"CollapseRunsCODEX(z={z_value})" @pytest.mark.parametrize("z_value", [0, 1, 2]) # Example z-values def test_collapse_runs_codex(tileCODEX, z_value): # Assuming tileCODEX is a pre-prepared CODEX tile for testing t = CollapseRunsCODEX(z=z_value) orig_im = tileCODEX.image # Manual calculation of expected result expected_image = orig_im[:, :, z_value, :] combined_channels = orig_im.shape[3] * orig_im.shape[4] expected_image = expected_image.reshape( orig_im.shape[0], orig_im.shape[1], combined_channels ) # Apply transformation t.apply(tileCODEX) # Assert conditions assert np.array_equal( tileCODEX.image, expected_image ), "Image transformation did not match expected result" assert ( len(tileCODEX.image.shape) == 3 ), "Transformed image does not have correct shape"