""" Copyright 2021, Dana-Farber Cancer Institute and Weill Cornell Medicine License: GNU GPL 2.0 """ import tempfile import anndata import h5py import numpy as np # TODO: Fletcher32 checksum? def writedataframeh5(h5, name, df): """ Write dataframe as h5 dataset. Args: h5(h5py.Dataset): root of h5 object that df will be written into name(str): name of dataset to be created df(pd.DataFrame): dataframe to be written """ h5.create_dataset( str(name), data=df, chunks=True, compression="gzip", compression_opts=5, shuffle=True, ) def writestringh5(h5, name, st): """ Write string as h5 attribute. Args: h5(h5py.Dataset): root of h5 object that st will be written into name(str): name of dataset to be created st(str): string to be written """ stringasarray = np.string_(str(st)) h5.attrs[str(name)] = stringasarray def writedicth5(h5, name, dic): """ Write dict as attributes of h5py.Group. Args: h5(h5py.Dataset): root of h5 object that dic will be written into name(str): name of dataset to be created dic(str): dict to be written """ h5.create_group(str(name)) for key, val in dic.items(): h5[name].attrs.create(str(key), data=val) def writetupleh5(h5, name, tup): """ Write tuple as h5 attribute. Args: h5(h5py.Dataset): root of h5 object that tup will be written into name(str): name of dataset to be created tup(str): tuple to be written """ tupleasarray = np.string_(str(tup)) h5.attrs[str(name)] = tupleasarray def readtupleh5(h5, key): """ Read tuple from h5. Args: h5(h5py.Dataset or h5py.Group): h5 object that will be read from key(str): key where data to read is stored """ return eval(h5.attrs[key]) if key in h5.attrs.keys() else None def writecounts(h5, counts): """ Write counts using anndata h5py. Args: h5(h5py.Dataset): root of h5 object that counts will be written into name(str): name of dataset to be created tup(anndata.AnnData): anndata object to be written """ countsh5 = h5py.File(counts.filename, "r") for ds in countsh5.keys(): countsh5.copy(ds, h5) def readcounts(h5): """ Read counts using anndata h5py. Args: h5(h5py.Dataset): h5 object that will be read """ # create and save temp h5py file # read using anndata from temp file # anndata does not support reading directly from h5 with tempfile.NamedTemporaryFile() as path: with h5py.File(path, "w") as f: for ds in h5.keys(): h5.copy(ds, f) return anndata.read_h5ad(path.name)