""" Copyright 2021, Dana-Farber Cancer Institute and Weill Cornell Medicine License: GNU GPL 2.0 """ import numpy as np # Utilities for ML module import torch from sklearn.utils.class_weight import compute_class_weight from torch.nn import functional as F from torch_geometric.utils import degree from tqdm import tqdm def scatter_sum(src, index, dim, out=None, dim_size=None): """ Reduces all values from the :attr:`src` tensor into :attr:`out` at the indices specified in the :attr:`index` tensor along a given axis :attr:`dim`. For each value in :attr:`src`, its output index is specified by its index in :attr:`src` for dimensions outside of :attr:`dim` and by the corresponding value in :attr:`index` for dimension :attr:`dim`. The applied reduction is defined via the :attr:`reduce` argument. Args: src: The source tensor. index: The indices of elements to scatter. dim: The axis along which to index. Default is -1. out: The destination tensor. dim_size: If `out` is not given, automatically create output with size `dim_size` at dimension `dim`. Reference: https://pytorch-scatter.readthedocs.io/en/latest/_modules/torch_scatter/scatter.html#scatter """ index = broadcast(index, src, dim) if out is None: size = list(src.size()) if dim_size is not None: size[dim] = dim_size elif index.numel() == 0: size[dim] = 0 else: size[dim] = int(index.max()) + 1 out = torch.zeros(size, dtype=src.dtype, device=src.device) return out.scatter_add_(dim, index, src) else: return out.scatter_add_(dim, index, src) def broadcast(src, other, dim): """ Broadcast tensors to match output tensor dimension. """ if dim < 0: dim = other.dim() + dim if src.dim() == 1: for _ in range(0, dim): src = src.unsqueeze(0) for _ in range(src.dim(), other.dim()): src = src.unsqueeze(-1) src = src.expand(other.size()) return src def get_degree_histogram(loader, edge_index_str, x_str): """ Returns the degree histogram to be used as input for the `deg` argument in `PNAConv`. """ deg_histogram = torch.zeros(1, dtype=torch.long) for data in tqdm(loader): d = degree( data[edge_index_str][1], num_nodes=data[x_str].shape[0], dtype=torch.long ) d_bincount = torch.bincount(d, minlength=deg_histogram.numel()) if d_bincount.size(0) > deg_histogram.size(0): d_bincount[: deg_histogram.size(0)] += deg_histogram deg_histogram = d_bincount else: assert d_bincount.size(0) == deg_histogram.size(0) deg_histogram += d_bincount return deg_histogram def get_class_weights(loader): """ Returns the per-class weights to be used in weighted loss functions. """ ys = [] for data in tqdm(loader): ys.append(data.target.numpy()) ys = np.array(ys).ravel() weights = compute_class_weight("balanced", classes=np.unique(ys), y=np.array(ys)) return weights # Potential Typop # def center_crop_im_batch(batch, dims, batch_order="BCHW"): # """ # Center crop images in a batch. # Args: # batch: The batch of images to be cropped # dims: Amount to be cropped (tuple for H, W) # """ # assert ( # batch.ndim == 4 # ), f"ERROR input shape is {batch.shape} - expecting a batch with 4 dimensions total" # assert ( # len(dims) == 2 # ), f"ERROR input cropping dims is {dims} - expecting a tuple with 2 elements total" # assert batch_order in { # "BHCW", # "BCHW", # }, f"ERROR input batch order {batch_order} not recognized. Must be one of 'BHCW' or 'BCHW'" # if dims == (0, 0): # # no cropping necessary in this case # batch_cropped = batch # else: # crop_t = dims[0] // 2 # crop_b = dims[0] - crop_t # crop_l = dims[1] // 2 # crop_r = dims[1] - crop_l # if batch_order == "BHWC": # batch_cropped = batch[:, crop_t:-crop_b, crop_l:-crop_r, :] # elif batch_order == "BCHW": # batch_cropped = batch[:, :, crop_t:-crop_b, crop_l:-crop_r] # else: # raise Exception("Input batch order not valid") # return batch_cropped def center_crop_im_batch(batch, dims, batch_order="BCHW"): """ Center crop images in a batch. Args: batch: The batch of images to be cropped dims: Amount to be cropped (tuple for H, W) """ assert ( batch.ndim == 4 ), f"ERROR input shape is {batch.shape} - expecting a batch with 4 dimensions total" assert ( len(dims) == 2 ), f"ERROR input cropping dims is {dims} - expecting a tuple with 2 elements total" assert batch_order in { "BHWC", "BCHW", }, f"ERROR input batch order {batch_order} not recognized. Must be one of 'BHWC' or 'BCHW'" if dims == (0, 0): # no cropping necessary in this case batch_cropped = batch else: crop_t = dims[0] // 2 crop_b = dims[0] - crop_t crop_l = dims[1] // 2 crop_r = dims[1] - crop_l if batch_order == "BHWC": batch_cropped = batch[:, crop_t:-crop_b, crop_l:-crop_r, :] elif batch_order == "BCHW": batch_cropped = batch[:, :, crop_t:-crop_b, crop_l:-crop_r] else: # pragma: no cover raise Exception("Input batch order not valid") return batch_cropped def dice_loss(true, logits, eps=1e-3): """ Computes the Sørensen–Dice loss. Note that PyTorch optimizers minimize a loss. In this case, we would like to maximize the dice loss so we return 1 - dice loss. From: https://github.com/kevinzakka/pytorch-goodies/blob/c039691f349be9f21527bb38b907a940bfc5e8f3/losses.py#L54 Args: true: a tensor of shape [B, 1, H, W]. logits: a tensor of shape [B, C, H, W]. Corresponds to the raw output or logits of the model. eps: added to the denominator for numerical stability. Returns: dice_loss: the Sørensen–Dice loss. """ assert ( true.dtype == torch.long ), f"Input 'true' is of type {true.type}. It should be a long." num_classes = logits.shape[1] if num_classes == 1: true_1_hot = torch.eye(num_classes + 1)[true.squeeze(1)] true_1_hot = true_1_hot.permute(0, 3, 1, 2).float() true_1_hot_f = true_1_hot[:, 0:1, :, :] true_1_hot_s = true_1_hot[:, 1:2, :, :] true_1_hot = torch.cat([true_1_hot_s, true_1_hot_f], dim=1) pos_prob = torch.sigmoid(logits) neg_prob = 1 - pos_prob probas = torch.cat([pos_prob, neg_prob], dim=1) else: true_1_hot = torch.eye(num_classes)[true.squeeze(1)] true_1_hot = true_1_hot.permute(0, 3, 1, 2).float() probas = F.softmax(logits, dim=1) true_1_hot = true_1_hot.type(logits.type()) dims = (0,) + tuple(range(2, true.ndimension())) intersection = torch.sum(probas * true_1_hot, dims) cardinality = torch.sum(probas + true_1_hot, dims) loss = (2.0 * intersection / (cardinality + eps)).mean() loss = 1 - loss return loss def dice_score(pred, truth, eps=1e-3): """ Calculate dice score for two tensors of the same shape. If tensors are not already binary, they are converted to bool by zero/non-zero. Args: pred (np.ndarray): Predictions truth (np.ndarray): ground truth eps (float, optional): Constant used for numerical stability to avoid divide-by-zero errors. Defaults to 1e-3. Returns: float: Dice score """ assert isinstance(truth, np.ndarray) and isinstance( pred, np.ndarray ), f"pred is of type {type(pred)} and truth is type {type(truth)}. Both must be np.ndarray" assert ( pred.shape == truth.shape ), f"pred shape {pred.shape} does not match truth shape {truth.shape}" # turn into binary if not already pred = pred != 0 truth = truth != 0 num = 2 * np.sum(pred.flatten() * truth.flatten()) denom = np.sum(pred) + np.sum(truth) + eps return float(num / denom) def get_sobel_kernels(size, dt=torch.float32): """ Create horizontal and vertical Sobel kernels for approximating gradients Returned kernels will be of shape (size, size) """ assert size % 2 == 1, "Size must be odd" h_range = torch.arange(-size // 2 + 1, size // 2 + 1, dtype=dt) v_range = torch.arange(-size // 2 + 1, size // 2 + 1, dtype=dt) h, v = torch.meshgrid([h_range, v_range]) h, v = h.transpose(0, 1), v.transpose(0, 1) kernel_h = h / (h * h + v * v + 1e-5) kernel_v = v / (h * h + v * v + 1e-5) kernel_h = kernel_h.type(dt) kernel_v = kernel_v.type(dt) return kernel_h, kernel_v def wrap_transform_multichannel(transform): """ Wrapper to make albumentations transform compatible with a multichannel mask. Channel should be in first dimension, i.e. (n_mask_channels, H, W) Args: transform: Albumentations transform. Must have 'additional_targets' parameter specified with a total of `n_channels` key,value pairs. All values must be 'mask' but the keys don't matter. e.g. for a mask with 3 channels, you could use: `additional targets = {'mask1' : 'mask', 'mask2' : 'mask', 'pathml' : 'mask'}` Returns: function that can be called with a multichannel mask argument """ targets = transform.additional_targets n_targets = len(targets) # make sure that everything is correct so that transform is correctly applied assert all( [v == "mask" for v in targets.values()] ), "error all values in transform.additional_targets must be 'mask'." def transform_out(*args, **kwargs): mask = kwargs.pop("mask") assert mask.ndim == 3, f"input mask shape {mask.shape} must be 3-dimensions ()" assert ( mask.shape[0] == n_targets ), f"input mask shape {mask.shape} doesn't match additional_targets {transform.additional_targets}" mask_to_dict = {key: mask[i, :, :] for i, key in enumerate(targets.keys())} kwargs.update(mask_to_dict) out = transform(*args, **kwargs) mask_out = np.stack([out.pop(key) for key in targets.keys()], axis=0) assert mask_out.shape == mask.shape out["mask"] = mask_out return out return transform_out