import glob import re from os import listdir, path import anndata as ad from dask.distributed import Client, LocalCluster from pathml.core import SlideDataset from pathml.core.slide_data import CODEXSlide from pathml.preprocessing.pipeline import Pipeline from pathml.preprocessing.transforms import CollapseRunsCODEX, QuantifyMIF, SegmentMIF def run_vectra_workflow( slide_dir, slide_ext="tif", nuclear_channel=0, cytoplasmic_channel=29, image_resolution=0.377442, use_parallel=True, n_cpus=10, tile_size=(1920, 1440), save_slidedata_file="./data/dataset_processed.h5", save_anndata_file="./data/adata_combined.h5ad", ): # assuming that all slides are in a single directory, all with .tif file extension for A, B in [listdir(slide_dir)]: vectra_list_A = [ CODEXSlide(p, stain="IF") for p in glob.glob(path.join(slide_dir, A, f"*.{slide_ext}")) ] vectra_list_B = [ CODEXSlide(p, stain="IF") for p in glob.glob(path.join(slide_dir, B, f"*.{slide_ext}")) ] # Fix the slide names and add origin labels (A, B) for slide_A, slide_B in zip(vectra_list_A, vectra_list_B): slide_A.name = re.sub("X.*", "A", slide_A.name) slide_B.name = re.sub("X.*", "B", slide_B.name) # Store all slides in a SlideDataSet object dataset = SlideDataset(vectra_list_A + vectra_list_B) # initialize pipeline pipe = Pipeline( [ CollapseRunsCODEX(z=0), SegmentMIF( model="mesmer", nuclear_channel=nuclear_channel, cytoplasm_channel=cytoplasmic_channel, image_resolution=image_resolution, ), QuantifyMIF(segmentation_mask="cell_segmentation"), ] ) # run pipeline if use_parallel: # Initialize a dask cluster using 10 workers. PathML pipelines can be run in distributed mode on # cloud compute or a cluster using dask.distributed. cluster = LocalCluster(n_workers=n_cpus, threads_per_worker=1, processes=True) client = Client(cluster) # Run the pipeline dataset.run( pipe, distributed=True, client=client, tile_size=tile_size, tile_pad=False ) else: dataset.run(pipe, distributed=False, tile_size=tile_size, tile_pad=False) # Write the processed datasets to disk dataset.write(save_slidedata_file) # Combine the count matrices into a single adata object: adata = ad.concat( [x.counts for x in dataset.slides], join="outer", label="Region", index_unique="_", ) # Fix and replace the regions names origin = adata.obs["Region"] origin = origin.astype(str).str.replace(r"[^a-zA-Z0-9 \n\.]", "") origin = origin.astype(str).str.replace("[\n]", "") origin = origin.str.replace("SlideDataname", "") adata.obs["Region"] = origin # save the adata object adata.write(filename=save_anndata_file)