File size: 20,414 Bytes
f4224d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 |
# Copyright 2023 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Implementing Algebraic Reasoning (AR)."""
from collections import defaultdict # pylint: disable=g-importing-member
from fractions import Fraction as frac # pylint: disable=g-importing-member
from typing import Any, Generator
import geometry as gm
import numpy as np
import problem as pr
from scipy import optimize
class InfQuotientError(Exception):
pass
def _gcd(x: int, y: int) -> int:
while y:
x, y = y, x % y
return x
def simplify(n: int, d: int) -> tuple[int, int]:
g = _gcd(n, d)
return (n // g, d // g)
# maximum denominator for a fraction.
MAX_DENOMINATOR = 1000000
# tolerance for fraction approximation
TOL = 1e-15
def get_quotient(v: float) -> tuple[int, int]:
n = v
d = 1
while abs(n - round(n)) > TOL:
d += 1
n += v
if d > MAX_DENOMINATOR:
e = InfQuotientError(v)
raise e
n = int(round(n))
return simplify(n, d)
def fix_v(v: float) -> float:
n, d = get_quotient(v)
return n / d
def fix(e: dict[str, float]) -> dict[str, float]:
return {k: fix_v(v) for k, v in e.items()}
def frac_string(f: frac) -> str:
n, d = get_quotient(f)
return f'{n}/{d}'
def hashed(e: dict[str, float]) -> tuple[tuple[str, float], ...]:
return tuple(sorted(list(e.items())))
def is_zero(e: dict[str, float]) -> bool:
return len(strip(e)) == 0 # pylint: disable=g-explicit-length-test
def strip(e: dict[str, float]) -> dict[str, float]:
return {v: c for v, c in e.items() if c != 0}
def plus(e1: dict[str, float], e2: dict[str, float]) -> dict[str, float]:
e = dict(e1)
for v, c in e2.items():
if v in e:
e[v] += c
else:
e[v] = c
return strip(e)
def plus_all(*es: list[dict[str, float]]) -> dict[str, float]:
result = {}
for e in es:
result = plus(result, e)
return result
def mult(e: dict[str, float], m: float) -> dict[str, float]:
return {v: m * c for v, c in e.items()}
def minus(e1: dict[str, float], e2: dict[str, float]) -> dict[str, float]:
return plus(e1, mult(e2, -1))
def div(e1: dict[str, float], e2: dict[str, float]) -> float:
"""Divide e1 by e2."""
e1 = strip(e1)
e2 = strip(e2)
if set(e1.keys()) != set(e2.keys()):
return None
n, d = None, None
for v, c1 in e1.items():
c2 = e2[v] # we want c1/c2 = n/d => c1*d=c2*n
if n is not None and c1 * d != c2 * n:
return None
n, d = c1, c2
return frac(n) / frac(d)
def recon(e: dict[str, float], const: str) -> tuple[str, dict[str, float]]:
"""Reconcile one variable in the expression e=0, given const."""
e = strip(e)
if len(e) == 0: # pylint: disable=g-explicit-length-test
return None
v0 = None
for v in e:
if v != const:
v0 = v
break
if v0 is None:
return v0
c0 = e.pop(v0)
return v0, {v: -c / c0 for v, c in e.items()}
def replace(
e: dict[str, float], v0: str, e0: dict[str, float]
) -> dict[str, float]:
if v0 not in e:
return e
e = dict(e)
m = e.pop(v0)
return plus(e, mult(e0, m))
def comb2(elems: list[Any]) -> Generator[tuple[Any, Any], None, None]:
if len(elems) < 1:
return
for i, e1 in enumerate(elems[:-1]):
for e2 in elems[i + 1 :]:
yield e1, e2
def perm2(elems: list[Any]) -> Generator[tuple[Any, Any], None, None]:
for e1, e2 in comb2(elems):
yield e1, e2
yield e2, e1
def chain2(elems: list[Any]) -> Generator[tuple[Any, Any], None, None]:
if len(elems) < 2:
return
for i, e1 in enumerate(elems[:-1]):
yield e1, elems[i + 1]
def update_groups(
groups1: list[Any], groups2: list[Any]
) -> tuple[list[Any], list[tuple[Any, Any]], list[list[Any]]]:
"""Update groups of equivalent elements.
Given groups1 = [set1, set2, set3, ..]
where all elems within each set_i is defined to be "equivalent" to each other.
(but not across the sets)
Incoming groups2 = [set1, set2, ...] similar to set1 - it is the
additional equivalent information on elements in groups1.
Return the new updated groups1 and the set of links
that make it that way.
Example:
groups1 = [{1, 2}, {3, 4, 5}, {6, 7}]
groups2 = [{2, 3, 8}, {9, 10, 11}]
=> new groups1 and links:
groups1 = [{1, 2, 3, 4, 5, 8}, {6, 7}, {9, 10, 11}]
links = (2, 3), (3, 8), (9, 10), (10, 11)
Explain: since groups2 says 2 and 3 are equivalent (with {2, 3, 8}),
then {1, 2} and {3, 4, 5} in groups1 will be merged,
because 2 and 3 each belong to those 2 groups.
Additionally 8 also belong to this same group.
{3, 4, 5} is left alone, while {9, 10, 11} is a completely new set.
The links to make this all happens is:
(2, 3): to merge {1, 2} and {3, 4, 5}
(3, 8): to link 8 into the merged({1, 2, 3, 4, 5})
(9, 10) and (10, 11): to make the new group {9, 10, 11}
Args:
groups1: a list of sets.
groups2: a list of sets.
Returns:
groups1, links, history: result of the update.
"""
history = []
links = []
for g2 in groups2:
joins = [None] * len(groups1) # mark which one in groups1 is merged
merged_g1 = set() # merge them into this.
old = None # any elem in g2 that belong to any set in groups1 (old)
new = [] # all elem in g2 that is new
for e in g2:
found = False
for i, g1 in enumerate(groups1):
if e not in g1:
continue
found = True
if joins[i]:
continue
joins[i] = True
merged_g1.update(g1)
if old is not None:
links.append((old, e)) # link to make merging happen.
old = e
if not found: # e is new!
new.append(e)
# now chain elems in new together.
if old is not None and new:
links.append((old, new[0]))
merged_g1.update(new)
links += chain2(new)
new_groups1 = []
if merged_g1: # put the merged_g1 in first
new_groups1.append(merged_g1)
# put the remaining (unjoined) groups in
new_groups1 += [g1 for j, g1 in zip(joins, groups1) if not j]
if old is None and new:
new_groups1 += [set(new)]
groups1 = new_groups1
history.append(groups1)
return groups1, links, history
class Table:
"""The coefficient matrix."""
def __init__(self, const: str = '1'):
self.const = const
self.v2e = {}
self.add_free(const) # the table {var: expression}
# to cache what is already derived/inputted
self.eqs = set()
self.groups = [] # groups of equal pairs.
# for why (linprog)
self.c = []
self.v2i = {} # v -> index of row in A.
self.deps = [] # equal number of columns.
self.A = np.zeros([0, 0]) # pylint: disable=invalid-name
self.do_why = True
def add_free(self, v: str) -> None:
self.v2e[v] = {v: frac(1)}
def replace(self, v0: str, e0: dict[str, float]) -> None:
for v, e in list(self.v2e.items()):
self.v2e[v] = replace(e, v0, e0)
def add_expr(self, vc: list[tuple[str, float]]) -> bool:
"""Add a new equality, represented by the list of tuples vc=[(v, c), ..]."""
result = {}
free = []
for v, c in vc:
c = frac(c)
if v in self.v2e:
result = plus(result, mult(self.v2e[v], c))
else:
free += [(v, c)]
if free == []: # pylint: disable=g-explicit-bool-comparison
if is_zero(self.modulo(result)):
return False
result = recon(result, self.const)
if result is None:
return False
v, e = result
self.replace(v, e)
elif len(free) == 1:
v, m = free[0]
self.v2e[v] = mult(result, frac(-1, m))
else:
dependent_v = None
for v, m in free:
if dependent_v is None and v != self.const:
dependent_v = (v, m)
continue
self.add_free(v)
result = plus(result, {v: m})
v, m = dependent_v
self.v2e[v] = mult(result, frac(-1, m))
return True
def register(self, vc: list[tuple[str, float]], dep: pr.Dependency) -> None:
"""Register a new equality vc=[(v, c), ..] with traceback dependency dep."""
result = plus_all(*[{v: c} for v, c in vc])
if is_zero(result):
return
vs, _ = zip(*vc)
for v in vs:
if v not in self.v2i:
self.v2i[v] = len(self.v2i)
(m, n), l = self.A.shape, len(self.v2i)
if l > m:
self.A = np.concatenate([self.A, np.zeros([l - m, n])], 0)
new_column = np.zeros([len(self.v2i), 2]) # N, 2
for v, c in vc:
new_column[self.v2i[v], 0] += float(c)
new_column[self.v2i[v], 1] -= float(c)
self.A = np.concatenate([self.A, new_column], 1)
self.c += [1.0, -1.0]
self.deps += [dep]
def register2(
self, a: str, b: str, m: float, n: float, dep: pr.Dependency
) -> None:
self.register([(a, m), (b, -n)], dep)
def register3(self, a: str, b: str, f: float, dep: pr.Dependency) -> None:
self.register([(a, 1), (b, -1), (self.const, -f)], dep)
def register4(
self, a: str, b: str, c: str, d: str, dep: pr.Dependency
) -> None:
self.register([(a, 1), (b, -1), (c, -1), (d, 1)], dep)
def why(self, e: dict[str, float]) -> list[Any]:
"""AR traceback == MILP."""
if not self.do_why:
return []
# why expr == 0?
# Solve min(c^Tx) s.t. A_eq * x = b_eq, x >= 0
e = strip(e)
if not e:
return []
b_eq = [0] * len(self.v2i)
for v, c in e.items():
b_eq[self.v2i[v]] += float(c)
try:
x = optimize.linprog(c=self.c, A_eq=self.A, b_eq=b_eq, method='highs')[
'x'
]
except: # pylint: disable=bare-except
x = optimize.linprog(
c=self.c,
A_eq=self.A,
b_eq=b_eq,
)['x']
deps = []
for i, dep in enumerate(self.deps):
if x[2 * i] > 1e-12 or x[2 * i + 1] > 1e-12:
if dep not in deps:
deps.append(dep)
return deps
def record_eq(self, v1: str, v2: str, v3: str, v4: str) -> None:
self.eqs.add((v1, v2, v3, v4))
self.eqs.add((v2, v1, v4, v3))
self.eqs.add((v3, v4, v1, v2))
self.eqs.add((v4, v3, v2, v1))
def check_record_eq(self, v1: str, v2: str, v3: str, v4: str) -> bool:
if (v1, v2, v3, v4) in self.eqs:
return True
if (v2, v1, v4, v3) in self.eqs:
return True
if (v3, v4, v1, v2) in self.eqs:
return True
if (v4, v3, v2, v1) in self.eqs:
return True
return False
def add_eq2(
self, a: str, b: str, m: float, n: float, dep: pr.Dependency
) -> None:
# a/b = m/n
if not self.add_expr([(a, m), (b, -n)]):
return []
self.register2(a, b, m, n, dep)
def add_eq3(self, a: str, b: str, f: float, dep: pr.Dependency) -> None:
# a - b = f * constant
self.eqs.add((a, b, frac(f)))
self.eqs.add((b, a, frac(1 - f)))
if not self.add_expr([(a, 1), (b, -1), (self.const, -f)]):
return []
self.register3(a, b, f, dep)
def add_eq4(self, a: str, b: str, c: str, d: str, dep: pr.Dependency) -> None:
# a - b = c - d
self.record_eq(a, b, c, d)
self.record_eq(a, c, b, d)
expr = list(minus({a: 1, b: -1}, {c: 1, d: -1}).items())
if not self.add_expr(expr):
return []
self.register4(a, b, c, d, dep)
self.groups, _, _ = update_groups(
self.groups, [{(a, b), (c, d)}, {(b, a), (d, c)}]
)
def pairs(self) -> Generator[list[tuple[str, str]], None, None]:
for v1, v2 in perm2(list(self.v2e.keys())): # pylint: disable=g-builtin-op
if v1 == self.const or v2 == self.const:
continue
yield v1, v2
def modulo(self, e: dict[str, float]) -> dict[str, float]:
return strip(e)
def get_all_eqs(
self,
) -> dict[tuple[tuple[str, float], ...], list[tuple[str, str]]]:
h2pairs = defaultdict(list)
for v1, v2 in self.pairs():
e1, e2 = self.v2e[v1], self.v2e[v2]
e12 = minus(e1, e2)
h12 = hashed(self.modulo(e12))
h2pairs[h12].append((v1, v2))
return h2pairs
def get_all_eqs_and_why(
self, return_quads: bool = True
) -> Generator[Any, None, None]:
"""Check all 4/3/2-permutations for new equalities."""
groups = []
for h, vv in self.get_all_eqs().items():
if h == (): # pylint: disable=g-explicit-bool-comparison
for v1, v2 in vv:
if (v1, v2) in self.eqs or (v2, v1) in self.eqs:
continue
self.eqs.add((v1, v2))
# why v1 - v2 = e12 ? (note modulo(e12) == 0)
why_dict = minus({v1: 1, v2: -1}, minus(self.v2e[v1], self.v2e[v2]))
yield v1, v2, self.why(why_dict)
continue
if len(h) == 1 and h[0][0] == self.const:
for v1, v2 in vv:
frac = h[0][1] # pylint: disable=redefined-outer-name
if (v1, v2, frac) in self.eqs:
continue
self.eqs.add((v1, v2, frac))
# why v1 - v2 = e12 ? (note modulo(e12) == 0)
why_dict = minus({v1: 1, v2: -1}, minus(self.v2e[v1], self.v2e[v2]))
value = simplify(frac.numerator, frac.denominator)
yield v1, v2, value, self.why(why_dict)
continue
groups.append(vv)
if not return_quads:
return
self.groups, links, _ = update_groups(self.groups, groups)
for (v1, v2), (v3, v4) in links:
if self.check_record_eq(v1, v2, v3, v4):
continue
e12 = minus(self.v2e[v1], self.v2e[v2])
e34 = minus(self.v2e[v3], self.v2e[v4])
why_dict = minus( # why (v1-v2)-(v3-v4)=e12-e34?
minus({v1: 1, v2: -1}, {v3: 1, v4: -1}), minus(e12, e34)
)
self.record_eq(v1, v2, v3, v4)
yield v1, v2, v3, v4, self.why(why_dict)
class GeometricTable(Table):
"""Abstract class representing the coefficient matrix (table) A."""
def __init__(self, name: str = ''):
super().__init__(name)
self.v2obj = {}
def get_name(self, objs: list[Any]) -> list[str]:
self.v2obj.update({o.name: o for o in objs})
return [o.name for o in objs]
def map2obj(self, names: list[str]) -> list[Any]:
return [self.v2obj[n] for n in names]
def get_all_eqs_and_why(
self, return_quads: bool
) -> Generator[Any, None, None]:
for out in super().get_all_eqs_and_why(return_quads):
if len(out) == 3:
x, y, why = out
x, y = self.map2obj([x, y])
yield x, y, why
if len(out) == 4:
x, y, f, why = out
x, y = self.map2obj([x, y])
yield x, y, f, why
if len(out) == 5:
a, b, x, y, why = out
a, b, x, y = self.map2obj([a, b, x, y])
yield a, b, x, y, why
class RatioTable(GeometricTable):
"""Coefficient matrix A for log(distance)."""
def __init__(self, name: str = ''):
name = name or '1'
super().__init__(name)
self.one = self.const
def add_eq(self, l1: gm.Length, l2: gm.Length, dep: pr.Dependency) -> None:
l1, l2 = self.get_name([l1, l2])
return super().add_eq3(l1, l2, 0.0, dep)
def add_const_ratio(
self, l1: gm.Length, l2: gm.Length, m: float, n: float, dep: pr.Dependency
) -> None:
l1, l2 = self.get_name([l1, l2])
return super().add_eq2(l1, l2, m, n, dep)
def add_eqratio(
self,
l1: gm.Length,
l2: gm.Length,
l3: gm.Length,
l4: gm.Length,
dep: pr.Dependency,
) -> None:
l1, l2, l3, l4 = self.get_name([l1, l2, l3, l4])
return self.add_eq4(l1, l2, l3, l4, dep)
def get_all_eqs_and_why(self) -> Generator[Any, None, None]:
return super().get_all_eqs_and_why(True)
class AngleTable(GeometricTable):
"""Coefficient matrix A for slope(direction)."""
def __init__(self, name: str = ''):
name = name or 'pi'
super().__init__(name)
self.pi = self.const
def modulo(self, e: dict[str, float]) -> dict[str, float]:
e = strip(e)
if self.pi not in e:
return super().modulo(e)
e[self.pi] = e[self.pi] % 1
return strip(e)
def add_para(
self, d1: gm.Direction, d2: gm.Direction, dep: pr.Dependency
) -> None:
return self.add_const_angle(d1, d2, 0, dep)
def add_const_angle(
self, d1: gm.Direction, d2: gm.Direction, ang: float, dep: pr.Dependency
) -> None:
if ang and d2._obj.num > d1._obj.num: # pylint: disable=protected-access
d1, d2 = d2, d1
ang = 180 - ang
d1, d2 = self.get_name([d1, d2])
num, den = simplify(ang, 180)
ang = frac(int(num), int(den))
return super().add_eq3(d1, d2, ang, dep)
def add_eqangle(
self,
d1: gm.Direction,
d2: gm.Direction,
d3: gm.Direction,
d4: gm.Direction,
dep: pr.Dependency,
) -> None:
"""Add the inequality d1-d2=d3-d4."""
# Use string as variables.
l1, l2, l3, l4 = [d._obj.num for d in [d1, d2, d3, d4]] # pylint: disable=protected-access
d1, d2, d3, d4 = self.get_name([d1, d2, d3, d4])
ang1 = {d1: 1, d2: -1}
ang2 = {d3: 1, d4: -1}
if l2 > l1:
ang1 = plus({self.pi: 1}, ang1)
if l4 > l3:
ang2 = plus({self.pi: 1}, ang2)
ang12 = minus(ang1, ang2)
self.record_eq(d1, d2, d3, d4)
self.record_eq(d1, d3, d2, d4)
expr = list(ang12.items())
if not self.add_expr(expr):
return []
self.register(expr, dep)
def get_all_eqs_and_why(self) -> Generator[Any, None, None]:
return super().get_all_eqs_and_why(True)
class DistanceTable(GeometricTable):
"""Coefficient matrix A for position(point, line)."""
def __init__(self, name: str = ''):
name = name or '1:1'
self.merged = {}
self.ratios = set()
super().__init__(name)
def pairs(self) -> Generator[tuple[str, str], None, None]:
l2vs = defaultdict(list)
for v in list(self.v2e.keys()): # pylint: disable=g-builtin-op
if v == self.const:
continue
l, p = v.split(':')
l2vs[l].append(p)
for l, ps in l2vs.items():
for p1, p2 in perm2(ps):
yield l + ':' + p1, l + ':' + p2
def name(self, l: gm.Line, p: gm.Point) -> str:
v = l.name + ':' + p.name
self.v2obj[v] = (l, p)
return v
def map2obj(self, names: list[str]) -> list[gm.Point]:
return [self.v2obj[n][1] for n in names]
def add_cong(
self,
l12: gm.Line,
l34: gm.Line,
p1: gm.Point,
p2: gm.Point,
p3: gm.Point,
p4: gm.Point,
dep: pr.Dependency,
) -> None:
"""Add that distance between p1 and p2 (on l12) == p3 and p4 (on l34)."""
if p2.num > p1.num:
p1, p2 = p2, p1
if p4.num > p3.num:
p3, p4 = p4, p3
p1 = self.name(l12, p1)
p2 = self.name(l12, p2)
p3 = self.name(l34, p3)
p4 = self.name(l34, p4)
return super().add_eq4(p1, p2, p3, p4, dep)
def get_all_eqs_and_why(self) -> Generator[Any, None, None]:
for x in super().get_all_eqs_and_why(True):
yield x
# Now we figure out all the const ratios.
h2pairs = defaultdict(list)
for v1, v2 in self.pairs():
if (v1, v2) in self.merged:
continue
e1, e2 = self.v2e[v1], self.v2e[v2]
e12 = minus(e1, e2)
h12 = hashed(e12)
h2pairs[h12].append((v1, v2, e12))
for (_, vves1), (_, vves2) in perm2(list(h2pairs.items())):
v1, v2, e12 = vves1[0]
for v1_, v2_, _ in vves1[1:]:
self.merged[(v1_, v2_)] = (v1, v2)
v3, v4, e34 = vves2[0]
for v3_, v4_, _ in vves2[1:]:
self.merged[(v3_, v4_)] = (v3, v4)
if (v1, v2, v3, v4) in self.ratios:
continue
d12 = div(e12, e34)
if d12 is None or d12 > 1 or d12 < 0:
continue
self.ratios.add((v1, v2, v3, v4))
self.ratios.add((v2, v1, v4, v3))
n, d = d12.numerator, d12.denominator
# (v1 - v2) * d = (v3 - v4) * n
why_dict = minus(
minus({v1: d, v2: -d}, {v3: n, v4: -n}),
minus(mult(e12, d), mult(e34, n)), # there is no modulo, so this is 0
)
v1, v2, v3, v4 = self.map2obj([v1, v2, v3, v4])
yield v1, v2, v3, v4, abs(n), abs(d), self.why(why_dict)
|