File size: 16,820 Bytes
f4224d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 |
# Copyright 2023 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Fast decoding routines for inference from a trained model.
Modified https://github.com/google/flax/blob/main/examples/wmt/decode.py
to acommodate
(a) continued decoding from a previous beam cache.
(b) init with with a single beam and then expand into beam_size beams.
"""
from typing import Any
import flax
import jax
from jax import lax
import jax.numpy as jnp
import numpy as np
# Constants
# "Effective negative infinity" constant for masking in beam search.
NEG_INF = np.array(-1.0e7)
# Beam search parameters
BEAM_SEARCH_DEFAULT_ALPHA = 0.6
MAX_DECODE_LEN = 32
# Brevity penalty parameters
BREVITY_LEN_BIAS_NUMERATOR = 5.0
BREVITY_LEN_BIAS_DENOMINATOR = 6.0
def brevity_penalty(alpha: float, length: int):
"""Brevity penalty function for beam search penalizing short sequences.
Args:
alpha: float: brevity-penalty scaling parameter.
length: int: length of considered sequence.
Returns:
Brevity penalty score as jax scalar.
"""
return jnp.power(
((BREVITY_LEN_BIAS_NUMERATOR + length) / BREVITY_LEN_BIAS_DENOMINATOR),
alpha,
)
# Beam handling utility functions:
def add_beam_dim(x: jnp.ndarray, beam_size: int) -> jnp.ndarray:
"""Creates new beam dimension in non-scalar array and tiles into it."""
if x.ndim == 0: # ignore scalars (e.g. cache index)
return x
x = jnp.expand_dims(x, axis=1)
tile_dims = [1] * x.ndim
tile_dims[1] = beam_size
return jnp.tile(x, tile_dims)
def add_beam_dim_cache(
cache: tuple[dict[str, jnp.ndarray], ...], beam_size: int
) -> tuple[dict[str, jnp.ndarray], ...]:
"""Creates new beam dimension in non-scalar array and tiles into it."""
new_cache = []
for layer in cache:
new_layer = {}
for key, x in layer.items():
if key in ['keys', 'vals']:
x = add_beam_dim(x, beam_size)
new_layer[key] = x
new_cache.append(new_layer)
return tuple(new_cache)
def flatten_beam_dim(x):
"""Flattens the first two dimensions of a non-scalar array."""
if x.ndim < 2: # ignore scalars (e.g. cache index)
return x
return x.reshape((x.shape[0] * x.shape[1],) + x.shape[2:])
def unflatten_beam_dim(x, batch_size, beam_size):
"""Unflattens the first, flat batch*beam dimension of a non-scalar array."""
if x.ndim == 0: # ignore scalars (e.g. cache index)
return x
assert batch_size * beam_size == x.shape[0]
return x.reshape((batch_size, beam_size) + x.shape[1:])
def flat_batch_beam_expand(x, beam_size):
"""Expands the each batch item by beam_size in batch_dimension."""
return flatten_beam_dim(add_beam_dim(x, beam_size))
def gather_beams(nested, beam_indices, batch_size, new_beam_size):
"""Gathers the beam slices indexed by beam_indices into new beam array.
Args:
nested: pytree of arrays or scalars (the latter ignored).
beam_indices: array of beam_indices
batch_size: int: size of batch.
new_beam_size: int: size of _new_ beam dimension.
Returns:
New pytree with new beam arrays.
[batch_size, old_beam_size, ...] --> [batch_size, new_beam_size, ...]
"""
batch_indices = jnp.reshape(
jnp.arange(batch_size * new_beam_size) // new_beam_size,
(batch_size, new_beam_size),
)
def gather_fn(x):
if x.ndim == 0: # ignore scalars (e.g. cache index)
return x
else:
return x[batch_indices, beam_indices]
return jax.tree_util.tree_map(gather_fn, nested)
def gather_topk_beams(nested, score_or_log_prob, batch_size, new_beam_size):
"""Gathers the top-k beam slices given by score_or_log_prob array.
Args:
nested: pytree of arrays or scalars (the latter ignored).
score_or_log_prob: [batch_size, old_beam_size] array of values to sort by
for top-k selection of beam slices.
batch_size: int: size of batch.
new_beam_size: int: size of _new_ top-k selected beam dimension
Returns:
New pytree with new beam arrays containing top k new_beam_size slices.
[batch_size, old_beam_size, ...] --> [batch_size, new_beam_size, ...]
"""
_, topk_indices = lax.top_k(score_or_log_prob, k=new_beam_size)
topk_indices = jnp.flip(topk_indices, axis=1)
return gather_beams(nested, topk_indices, batch_size, new_beam_size)
def apply_on_cache(fn, cache, *args, **kwargs):
"""Apply fn(val) only when key is 'keys' or 'val'."""
new_cache = []
for layer in cache:
new_layer = {}
for key, val in layer.items():
if key in ['keys', 'values', 'current_index', 'relative_position_bias']:
val = fn(val, *args, **kwargs)
new_layer[key] = val
new_cache.append(new_layer)
return tuple(new_cache)
# Beam search state:
@flax.struct.dataclass
class BeamState:
"""Holds beam search state data."""
# The position of the decoding loop in the length dimension.
cur_index: jax.Array # scalar int32: current decoded length index
# The active sequence log probabilities and finished sequence scores.
live_logprobs: jax.Array # float32: [batch_size, beam_size]
finished_scores: jax.Array # float32: [batch_size, beam_size]
# The current active-beam-searching and finished sequences.
live_seqs: jax.Array # int32: [batch_size, beam_size, max_decode_len]
finished_seqs: jax.Array # int32: [batch_size, beam_size,
# max_decode_len]
# Records which of the 'finished_seqs' is occupied and not a filler slot.
finished_flags: jax.Array # bool: [batch_size, beam_size]
# The current state of the autoregressive decoding caches.
cache: Any # Any pytree of arrays, e.g. flax attention Cache object
def beam_init(seed_token, batch_size, beam_size, max_decode_len, cache):
"""Initializes the beam search state data structure."""
cur_index0 = jnp.array(0)
live_logprobs0 = jnp.tile(
jnp.array([0.0] + [NEG_INF] * (beam_size - 1)), [batch_size, 1]
)
finished_scores0 = jnp.ones((batch_size, beam_size)) * NEG_INF
live_seqs0 = jnp.concatenate(
[
jnp.reshape(seed_token, (batch_size, beam_size, 1)),
jnp.zeros((batch_size, beam_size, max_decode_len - 1), jnp.int32),
],
axis=-1,
) # (batch, beam, max_decode_len)
finished_seqs0 = jnp.zeros((batch_size, beam_size, max_decode_len), jnp.int32)
finished_flags0 = jnp.zeros((batch_size, beam_size), jnp.bool_)
beam_cache0 = apply_on_cache(lambda x: jnp.expand_dims(x, axis=0), cache)
return BeamState(
cur_index=cur_index0,
live_logprobs=live_logprobs0,
finished_scores=finished_scores0,
live_seqs=live_seqs0,
finished_seqs=finished_seqs0,
finished_flags=finished_flags0,
cache=beam_cache0,
)
# Beam search routine:
def beam_search_flat(
seed_token,
cache,
tokens_to_logits,
alpha=BEAM_SEARCH_DEFAULT_ALPHA,
eos=None,
max_decode_len=MAX_DECODE_LEN,
mask=None,
):
"""Beam search for LM.
inputs and cache is already flat! i.e. first dimention == batch*beam.
Args:
seed_token: array: [beam_size, 1] int32 sequence of tokens.
cache: flax attention cache.
tokens_to_logits: fast autoregressive decoder function taking single token
slices and cache and returning next-token logits and updated cache.
alpha: float: scaling factor for brevity penalty.
eos: array: [vocab] 1 for end-of-sentence tokens, 0 for not.
max_decode_len: int: maximum length of decoded translations.
mask: array: [vocab] binary mask for vocab. 1 to keep the prob, 0 to set the
prob := 0.
Returns:
Tuple of:
[beam_size, max_decode_len] top-scoring sequences
[beam_size] beam-search scores.
"""
# We liberally annotate shape information for clarity below.
batch_size, beam_size = 1, seed_token.shape[0]
mask = mask.reshape((1, 1, -1))
eos = eos.reshape((1, 1, -1))
mask_bias = (1 - mask) * NEG_INF
# initialize beam search state
beam_search_init_state = beam_init(
seed_token, batch_size, beam_size, max_decode_len, cache
)
def beam_search_loop_cond_fn(state):
"""Beam search loop termination condition."""
# Have we reached max decoding length?
not_at_end = state.cur_index < max_decode_len - 1
# Is no further progress in the beam search possible?
# Get the best possible scores from alive sequences.
min_brevity_penalty = brevity_penalty(alpha, max_decode_len)
best_live_scores = state.live_logprobs[:, -1:] / min_brevity_penalty
# Get the worst scores from finished sequences.
worst_finished_scores = jnp.min(
state.finished_scores, axis=1, keepdims=True
)
# Mask out scores from slots without any actual finished sequences.
worst_finished_scores = jnp.where(
state.finished_flags, worst_finished_scores, NEG_INF
)
# If no best possible live score is better than current worst finished
# scores, the search cannot improve the finished set further.
search_terminated = jnp.all(worst_finished_scores > best_live_scores)
# If we're not at the max decode length, and the search hasn't terminated,
# continue looping.
return not_at_end & (~search_terminated)
def beam_search_loop_body_fn(state):
"""Beam search loop state update function."""
# Collect the current position slice along length to feed the fast
# autoregressive decoder model. Flatten the beam dimension into batch
# dimension for feeding into the model.
# --> [batch * beam, 1]
flat_ids = flatten_beam_dim(
lax.dynamic_slice(
state.live_seqs, (0, 0, state.cur_index), (batch_size, beam_size, 1)
)
)
# Flatten beam dimension into batch to be compatible with model.
# {[batch, beam, ...], ...} --> {[batch * beam, ...], ...}
flat_cache = apply_on_cache(flatten_beam_dim, state.cache)
# Call fast-decoder model on current tokens to get next-position logits.
# --> [batch * beam, vocab]
flat_logits, new_flat_cache = tokens_to_logits(flat_ids, flat_cache)
# unflatten beam dimension
# [batch * beam, vocab] --> [batch, beam, vocab]
logits = unflatten_beam_dim(flat_logits, batch_size, beam_size)
# Unflatten beam dimension in attention cache arrays
# {[batch * beam, ...], ...} --> {[batch, beam, ...], ...}
new_cache = apply_on_cache(
unflatten_beam_dim, new_flat_cache, batch_size, beam_size
)
# Gather log probabilities from logits
candidate_log_probs = jax.nn.log_softmax(logits)
# Add new logprobs to existing prefix logprobs.
# --> [batch, beam, vocab]
log_probs = candidate_log_probs + jnp.expand_dims(
state.live_logprobs, axis=2
)
# We'll need the vocab size, gather it from the log probability dimension.
vocab_size = log_probs.shape[2]
# mask away some tokens.
log_probs += mask_bias # [batch,beam,vocab]+[1,1,vocab]
# Each item in batch has beam_size * vocab_size candidate sequences.
# For each item, get the top 2*k candidates with the highest log-
# probabilities. We gather the top 2*K beams here so that even if the best
# K sequences reach EOS simultaneously, we have another K sequences
# remaining to continue the live beam search.
beams_to_keep = 2 * beam_size
# Flatten beam and vocab dimensions.
flat_log_probs = log_probs.reshape((batch_size, beam_size * vocab_size))
# Gather the top 2*K scores from _all_ beams.
# --> [batch, 2*beams], [batch, 2*beams]
topk_log_probs, topk_indices = lax.top_k(flat_log_probs, k=beams_to_keep)
# Recover the beam index by floor division.
topk_beam_indices = topk_indices // vocab_size
# Gather 2*k top beams.
# --> [batch, 2*beams, length]
topk_seq = gather_beams(
state.live_seqs, topk_beam_indices, batch_size, beams_to_keep
)
# Append the most probable 2*K token IDs to the top 2*K sequences
# Recover token id by modulo division and expand Id array for broadcasting.
# --> [batch, 2*beams, 1]
topk_ids = jnp.expand_dims(topk_indices % vocab_size, axis=2)
# Update sequences for the 2*K top-k new sequences.
# --> [batch, 2*beams, length]
topk_seq = lax.dynamic_update_slice(
topk_seq, topk_ids, (0, 0, state.cur_index + 1)
)
# Update LIVE (in-progress) sequences:
# Did any of these sequences reach an end marker?
# --> [batch, 2*beams]
last_token = topk_seq[:, :, state.cur_index + 1]
last_token = jax.nn.one_hot(last_token, vocab_size, dtype=jnp.bfloat16)
# any([batch, 2b, vocab] * [1, 1, vocab], axis=-1) == [batch, 2b]
newly_finished = jnp.any(last_token * eos, axis=-1)
# To prevent these newly finished sequences from being added to the LIVE
# set of active beam search sequences, set their log probs to a very large
# negative value.
new_log_probs = topk_log_probs + newly_finished * NEG_INF
# Determine the top k beam indices (from top 2*k beams) from log probs.
# --> [batch, beams]
_, new_topk_indices = lax.top_k(new_log_probs, k=beam_size)
new_topk_indices = jnp.flip(new_topk_indices, axis=1)
# Gather the top k beams (from top 2*k beams).
# --> [batch, beams, length], [batch, beams]
top_alive_seq, top_alive_log_probs = gather_beams(
[topk_seq, new_log_probs], new_topk_indices, batch_size, beam_size
)
# Determine the top k beam indices from the original set of all beams.
# --> [batch, beams]
top_alive_indices = gather_beams(
topk_beam_indices, new_topk_indices, batch_size, beam_size
)
# With these, gather the top k beam-associated caches.
# --> {[batch, beams, ...], ...}
top_alive_cache = apply_on_cache(
gather_beams, new_cache, top_alive_indices, batch_size, beam_size
)
# Update FINISHED (reached end of sentence) sequences:
# Calculate new seq scores from log probabilities.
new_scores = topk_log_probs / brevity_penalty(alpha, state.cur_index + 1)
# Mask out the still unfinished sequences by adding large negative value.
# --> [batch, 2*beams]
new_scores += (~newly_finished) * NEG_INF
# Combine sequences, scores, and flags along the beam dimension and compare
# new finished sequence scores to existing finished scores and select the
# best from the new set of beams.
finished_seqs = jnp.concatenate( # --> [batch, 3*beams, length]
[state.finished_seqs, topk_seq], axis=1
)
finished_scores = jnp.concatenate( # --> [batch, 3*beams]
[state.finished_scores, new_scores], axis=1
)
finished_flags = jnp.concatenate( # --> [batch, 3*beams]
[state.finished_flags, newly_finished], axis=1
)
# --> [batch, beams, length], [batch, beams], [batch, beams]
top_finished_seq, top_finished_scores, top_finished_flags = (
gather_topk_beams(
[finished_seqs, finished_scores, finished_flags],
finished_scores,
batch_size,
beam_size,
)
)
return BeamState(
cur_index=state.cur_index + 1,
live_logprobs=top_alive_log_probs,
finished_scores=top_finished_scores,
live_seqs=top_alive_seq,
finished_seqs=top_finished_seq,
finished_flags=top_finished_flags,
cache=top_alive_cache,
)
# Run while loop and get final beam search state.
final_state = lax.while_loop(
beam_search_loop_cond_fn, beam_search_loop_body_fn, beam_search_init_state
)
# Account for the edge-case where there are no finished sequences for a
# particular batch item. If so, return live sequences for that batch item.
# --> [batch]
none_finished = jnp.any(final_state.finished_flags, axis=1)
# --> [batch, beams, length]
finished_seqs = jnp.where(
none_finished[:, None, None],
final_state.finished_seqs,
final_state.live_seqs,
)
# --> [batch, beams]
finished_scores = jnp.where(
none_finished[:, None],
final_state.finished_scores,
final_state.live_logprobs,
)
finished_seqs = jnp.reshape(finished_seqs, (beam_size, max_decode_len))
finished_scores = jnp.reshape(finished_scores, (beam_size,))
final_cache = apply_on_cache(flatten_beam_dim, final_state.cache)
return finished_seqs, finished_scores, final_cache
|