File size: 14,209 Bytes
f4224d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 |
# Copyright 2023 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Implements geometric objects used in the graph representation."""
from __future__ import annotations
from collections import defaultdict # pylint: disable=g-importing-member
from typing import Any, Type
# pylint: disable=protected-access
class Node:
r"""Node in the proof state graph.
Can be Point, Line, Circle, etc.
Each node maintains a merge history to
other nodes if they are (found out to be) equivalent
a -> b -
\
c -> d -> e -> f -> g
d.merged_to = e
d.rep = g
d.merged_from = {a, b, c, d}
d.equivs = {a, b, c, d, e, f, g}
"""
def __init__(self, name: str = '', graph: Any = None):
self.name = name or str(self)
self.graph = graph
self.edge_graph = {}
# Edge graph: what other nodes is connected to this node.
# edge graph = {
# other1: {self1: deps, self2: deps},
# other2: {self2: deps, self3: deps}
# }
self.merge_graph = {}
# Merge graph: history of merges with other nodes.
# merge_graph = {self1: {self2: deps1, self3: deps2}}
self.rep_by = None # represented by.
self.members = {self}
self._val = None
self._obj = None
self.deps = []
# numerical representation.
self.num = None
self.change = set() # what other nodes' num rely on this node?
def set_rep(self, node: Node) -> None:
if node == self:
return
self.rep_by = node
node.merge_edge_graph(self.edge_graph)
node.members.update(self.members)
def rep(self) -> Node:
x = self
while x.rep_by:
x = x.rep_by
return x
def why_rep(self) -> list[Any]:
return self.why_equal([self.rep()], None)
def rep_and_why(self) -> tuple[Node, list[Any]]:
rep = self.rep()
return rep, self.why_equal([rep], None)
def neighbors(
self, oftype: Type[Node], return_set: bool = False, do_rep: bool = True
) -> list[Node]:
"""Neighbors of this node in the proof state graph."""
if do_rep:
rep = self.rep()
else:
rep = self
result = set()
for n in rep.edge_graph:
if oftype is None or oftype and isinstance(n, oftype):
if do_rep:
result.add(n.rep())
else:
result.add(n)
if return_set:
return result
return list(result)
def merge_edge_graph(
self, new_edge_graph: dict[Node, dict[Node, list[Node]]]
) -> None:
for x, xdict in new_edge_graph.items():
if x in self.edge_graph:
self.edge_graph[x].update(dict(xdict))
else:
self.edge_graph[x] = dict(xdict)
def merge(self, nodes: list[Node], deps: list[Any]) -> None:
for node in nodes:
self.merge_one(node, deps)
def merge_one(self, node: Node, deps: list[Any]) -> None:
node.rep().set_rep(self.rep())
if node in self.merge_graph:
return
self.merge_graph[node] = deps
node.merge_graph[self] = deps
def is_val(self, node: Node) -> bool:
return (
isinstance(self, Line)
and isinstance(node, Direction)
or isinstance(self, Segment)
and isinstance(node, Length)
or isinstance(self, Angle)
and isinstance(node, Measure)
or isinstance(self, Ratio)
and isinstance(node, Value)
)
def set_val(self, node: Node) -> None:
self._val = node
def set_obj(self, node: Node) -> None:
self._obj = node
@property
def val(self) -> Node:
if self._val is None:
return None
return self._val.rep()
@property
def obj(self) -> Node:
if self._obj is None:
return None
return self._obj.rep()
def equivs(self) -> set[Node]:
return self.rep().members
def connect_to(self, node: Node, deps: list[Any] = None) -> None:
rep = self.rep()
if node in rep.edge_graph:
rep.edge_graph[node].update({self: deps})
else:
rep.edge_graph[node] = {self: deps}
if self.is_val(node):
self.set_val(node)
node.set_obj(self)
def equivs_upto(self, level: int) -> dict[Node, Node]:
"""What are the equivalent nodes up to a certain level."""
parent = {self: None}
visited = set()
queue = [self]
i = 0
while i < len(queue):
current = queue[i]
i += 1
visited.add(current)
for neighbor in current.merge_graph:
if (
level is not None
and current.merge_graph[neighbor].level is not None
and current.merge_graph[neighbor].level >= level
):
continue
if neighbor not in visited:
queue.append(neighbor)
parent[neighbor] = current
return parent
def why_equal(self, others: list[Node], level: int) -> list[Any]:
"""BFS why this node is equal to other nodes."""
others = set(others)
found = 0
parent = {}
queue = [self]
i = 0
while i < len(queue):
current = queue[i]
if current in others:
found += 1
if found == len(others):
break
i += 1
for neighbor in current.merge_graph:
if (
level is not None
and current.merge_graph[neighbor].level is not None
and current.merge_graph[neighbor].level >= level
):
continue
if neighbor not in parent:
queue.append(neighbor)
parent[neighbor] = current
return bfs_backtrack(self, others, parent)
def why_equal_groups(
self, groups: list[list[Node]], level: int
) -> tuple[list[Any], list[Node]]:
"""BFS for why self is equal to at least one member of each group."""
others = [None for _ in groups]
found = 0
parent = {}
queue = [self]
i = 0
while i < len(queue):
current = queue[i]
for j, grp in enumerate(groups):
if others[j] is None and current in grp:
others[j] = current
found += 1
if found == len(others):
break
i += 1
for neighbor in current.merge_graph:
if (
level is not None
and current.merge_graph[neighbor].level is not None
and current.merge_graph[neighbor].level >= level
):
continue
if neighbor not in parent:
queue.append(neighbor)
parent[neighbor] = current
return bfs_backtrack(self, others, parent), others
def why_val(self, level: int) -> list[Any]:
return self._val.why_equal([self.val], level)
def why_connect(self, node: Node, level: int = None) -> list[Any]:
rep = self.rep()
equivs = list(rep.edge_graph[node].keys())
if not equivs:
return None
equiv = equivs[0]
dep = rep.edge_graph[node][equiv]
return [dep] + self.why_equal(equiv, level)
def why_connect(*pairs: list[tuple[Node, Node]]) -> list[Any]:
result = []
for node1, node2 in pairs:
result += node1.why_connect(node2)
return result
def is_equiv(x: Node, y: Node, level: int = None) -> bool:
level = level or float('inf')
return x.why_equal([y], level) is not None
def is_equal(x: Node, y: Node, level: int = None) -> bool:
if x == y:
return True
if x._val is None or y._val is None:
return False
if x.val != y.val:
return False
return is_equiv(x._val, y._val, level)
def bfs_backtrack(
root: Node, leafs: list[Node], parent: dict[Node, Node]
) -> list[Any]:
"""Return the path given BFS trace of parent nodes."""
backtracked = {root} # no need to backtrack further when touching this set.
deps = []
for node in leafs:
if node is None:
return None
if node in backtracked:
continue
if node not in parent:
return None
while node not in backtracked:
backtracked.add(node)
deps.append(node.merge_graph[parent[node]])
node = parent[node]
return deps
class Point(Node):
pass
class Line(Node):
"""Node of type Line."""
def new_val(self) -> Direction:
return Direction()
def why_coll(self, points: list[Point], level: int = None) -> list[Any]:
"""Why points are connected to self."""
level = level or float('inf')
groups = []
for p in points:
group = [
l
for l, d in self.edge_graph[p].items()
if d is None or d.level < level
]
if not group:
return None
groups.append(group)
min_deps = None
for line in groups[0]:
deps, others = line.why_equal_groups(groups[1:], level)
if deps is None:
continue
for p, o in zip(points, [line] + others):
deps.append(self.edge_graph[p][o])
if min_deps is None or len(deps) < len(min_deps):
min_deps = deps
if min_deps is None:
return None
return [d for d in min_deps if d is not None]
class Segment(Node):
def new_val(self) -> Length:
return Length()
class Circle(Node):
"""Node of type Circle."""
def why_cyclic(self, points: list[Point], level: int = None) -> list[Any]:
"""Why points are connected to self."""
level = level or float('inf')
groups = []
for p in points:
group = [
c
for c, d in self.edge_graph[p].items()
if d is None or d.level < level
]
if not group:
return None
groups.append(group)
min_deps = None
for circle in groups[0]:
deps, others = circle.why_equal_groups(groups[1:], level)
if deps is None:
continue
for p, o in zip(points, [circle] + others):
deps.append(self.edge_graph[p][o])
if min_deps is None or len(deps) < len(min_deps):
min_deps = deps
if min_deps is None:
return None
return [d for d in min_deps if d is not None]
def why_equal(x: Node, y: Node, level: int = None) -> list[Any]:
if x == y:
return []
if not x._val or not y._val:
return None
if x._val == y._val:
return []
return x._val.why_equal([y._val], level)
class Direction(Node):
pass
def get_lines_thru_all(*points: list[Point]) -> list[Line]:
line2count = defaultdict(lambda: 0)
points = set(points)
for p in points:
for l in p.neighbors(Line):
line2count[l] += 1
return [l for l, count in line2count.items() if count == len(points)]
def line_of_and_why(
points: list[Point], level: int = None
) -> tuple[Line, list[Any]]:
"""Why points are collinear."""
for l0 in get_lines_thru_all(*points):
for l in l0.equivs():
if all([p in l.edge_graph for p in points]):
x, y = l.points
colls = list({x, y} | set(points))
# if len(colls) < 3:
# return l, []
why = l.why_coll(colls, level)
if why is not None:
return l, why
return None, None
def get_circles_thru_all(*points: list[Point]) -> list[Circle]:
circle2count = defaultdict(lambda: 0)
points = set(points)
for p in points:
for c in p.neighbors(Circle):
circle2count[c] += 1
return [c for c, count in circle2count.items() if count == len(points)]
def circle_of_and_why(
points: list[Point], level: int = None
) -> tuple[Circle, list[Any]]:
"""Why points are concyclic."""
for c0 in get_circles_thru_all(*points):
for c in c0.equivs():
if all([p in c.edge_graph for p in points]):
cycls = list(set(points))
why = c.why_cyclic(cycls, level)
if why is not None:
return c, why
return None, None
def name_map(struct: Any) -> Any:
if isinstance(struct, list):
return [name_map(x) for x in struct]
elif isinstance(struct, tuple):
return tuple([name_map(x) for x in struct])
elif isinstance(struct, set):
return set([name_map(x) for x in struct])
elif isinstance(struct, dict):
return {name_map(x): name_map(y) for x, y in struct.items()}
else:
return getattr(struct, 'name', '')
class Angle(Node):
"""Node of type Angle."""
def new_val(self) -> Measure:
return Measure()
def set_directions(self, d1: Direction, d2: Direction) -> None:
self._d = d1, d2
@property
def directions(self) -> tuple[Direction, Direction]:
d1, d2 = self._d
if d1 is None or d2 is None:
return d1, d2
return d1.rep(), d2.rep()
class Measure(Node):
pass
class Length(Node):
pass
class Ratio(Node):
"""Node of type Ratio."""
def new_val(self) -> Value:
return Value()
def set_lengths(self, l1: Length, l2: Length) -> None:
self._l = l1, l2
@property
def lengths(self) -> tuple[Length, Length]:
l1, l2 = self._l
if l1 is None or l2 is None:
return l1, l2
return l1.rep(), l2.rep()
class Value(Node):
pass
def all_angles(
d1: Direction, d2: Direction, level: int = None
) -> tuple[Angle, list[Direction], list[Direction]]:
level = level or float('inf')
d1s = d1.equivs_upto(level)
d2s = d2.equivs_upto(level)
for ang in d1.rep().neighbors(Angle):
d1_, d2_ = ang._d
if d1_ in d1s and d2_ in d2s:
yield ang, d1s, d2s
def all_ratios(
d1, d2, level=None
) -> tuple[Angle, list[Direction], list[Direction]]:
level = level or float('inf')
d1s = d1.equivs_upto(level)
d2s = d2.equivs_upto(level)
for ang in d1.rep().neighbors(Ratio):
d1_, d2_ = ang._l
if d1_ in d1s and d2_ in d2s:
yield ang, d1s, d2s
RANKING = {
Point: 0,
Line: 1,
Segment: 2,
Circle: 3,
Direction: 4,
Length: 5,
Angle: 6,
Ratio: 7,
Measure: 8,
Value: 9,
}
def val_type(x: Node) -> Type[Node]:
if isinstance(x, Line):
return Direction
if isinstance(x, Segment):
return Length
if isinstance(x, Angle):
return Measure
if isinstance(x, Ratio):
return Value
|