File size: 5,884 Bytes
f4224d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
# Copyright 2023 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Transformer language model generate mode."""
from typing import Any, Tuple
import beam_search
import decoder_stack
import gin
import jax
import jax.numpy as jnp
from transformer import models
@gin.configurable
class DecoderOnlyLanguageModelGenerate(models.DecoderOnlyLanguageModel):
"""Decoder only language modeling in inference mode."""
decoder_factory = decoder_stack.DecoderStackGenerate
num_heads: int = gin.REQUIRED
head_size: int = gin.REQUIRED
def get_fake_input(self) -> dict[str, Any]:
fake_input_dict = super().get_fake_input()
b = self.task_config.batch_size
n = self.num_heads
h = self.head_size
fake_input_dict.update({
'dstate': tuple(
[{
'current_index': jnp.array([0] * b, dtype=jnp.int32),
'keys': jnp.zeros((b, 2048, n, h), dtype=jnp.bfloat16),
'values': jnp.zeros((b, 2048, n, h), dtype=jnp.bfloat16),
'recurrent_kvq': None,
'relative_position_bias': jnp.zeros(
(b, n, 1, 1024), dtype=jnp.bfloat16
),
}]
* 12
),
'eos': jnp.zeros([1024], dtype=jnp.bfloat16),
'mask': jnp.ones([1024], dtype=jnp.bfloat16),
'length': 1,
'temperature': 1.0,
})
return fake_input_dict
def __call__(self, inputs: ...) -> tuple[Any, dict[str, Any]]:
# Make sure this code is not used on untested cases.
if self.mode not in ['init', 'beam_search']:
raise ValueError(f'{type(self)} cannot do mode {self.mode}')
if self.decoder.supports_generate():
raise ValueError(f'{type(self)}.decoder cannot supports_generate()')
self.decoder(
input_tokens=inputs['targets'][:, 0:1],
target_tokens=None,
start_of_sequence=inputs['start_of_sequence'],
)
b = inputs['targets'].shape[0]
no_start_of_seq = jnp.array([False] * b, dtype=jnp.bool_)
# This fn is used in both beam_search or topk_sampling.
def tokens_to_logits_fn(
input_token: jnp.ndarray, dstate: tuple[dict[str, jnp.ndarray], ...]
) -> tuple[jnp.ndarray, tuple[dict[str, jnp.ndarray], ...]]:
(logits, dstate, _) = self.decoder(
input_tokens=input_token,
target_tokens=None,
start_of_sequence=no_start_of_seq,
decoder_state=dstate,
)
return logits[:, -1, :], dstate
last_token = jax.lax.dynamic_slice_in_dim(
inputs['targets'], inputs['length'] - 1, 1, axis=1
)
# last token is used to seed beam_search
inputs['targets'] = inputs['targets'][:, 0:-1]
dstate = jax.lax.cond(
inputs['start_of_sequence'][0],
lambda: self.generate(inputs)[0],
lambda: inputs['dstate'],
)
# Then we run beam search, init with last_token & dstate.
finished_seqs, finished_scores, dstate = beam_search.beam_search_flat(
last_token,
dstate,
tokens_to_logits_fn,
max_decode_len=512,
eos=inputs['eos'].reshape((1, 1, -1)),
mask=inputs['mask'].reshape((1, 1, -1)),
)
return 0.0, {
'finished_seqs': finished_seqs,
'finished_scores': finished_scores,
'dstate': dstate,
}
def generate(
self, inputs: ...
) -> tuple[tuple[dict[str, jnp.ndarray, ...], ...], jnp.ndarray]:
"""Generate an output sequence.
Args:
inputs: the same as argument to _call_.
Returns:
An array of generated tokens of shape (batch_size, sequence_length).
"""
input_tokens = inputs['targets'] # [b,seq_len]
start_of_sequence = inputs['start_of_sequence'] # [b]
target_tokens = jnp.pad(input_tokens[:, 1:], [(0, 0), (0, 1)])
batch_size = target_tokens.shape[0]
# Assuming all sequences start at the same time.
start0 = inputs['start_of_sequence'][0]
dstate = jax.lax.cond(
start0,
lambda: self.decoder.init_decoder_state_vanilla( # pylint: disable=g-long-lambda
1024, start_of_sequence
),
lambda: inputs['dstate'],
)
first_token = input_tokens[:, 0:1]
no_start_of_seq = jnp.array([False] * batch_size, dtype=jnp.bool_)
temperature = 1
if 'temperature' in inputs:
temperature = inputs['temperature']
num_steps = inputs['length']
if self.mode == 'beam_search':
num_steps -= 1
def cond_fn(scan_state) -> jnp.bool_:
_, _, i, _ = scan_state
return i < num_steps
def loop_fn(scan_state: Any) -> Tuple[Any, Any, Any, Any]:
(dstate, input_token, i, _) = scan_state
(logits, dstate, _) = self.decoder(
input_tokens=input_token,
target_tokens=None,
start_of_sequence=no_start_of_seq,
decoder_state=dstate,
)
logits = logits / temperature
output_token = jax.lax.dynamic_slice_in_dim(target_tokens, i, 1, axis=1)
return (dstate, output_token, i + 1, logits)
# Scan over the sequence length.
dummy_logits = jnp.zeros((batch_size, 1, 1024))
initial_scan_state = (dstate, first_token, 0, dummy_logits)
dstate, _, _, logits = jax.lax.while_loop(
cond_fn, loop_fn, initial_scan_state
)
return dstate, logits
|