|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""The decoder stack in inference mode.""" |
|
|
|
from typing import Any, Tuple |
|
|
|
import gin |
|
from transformer import decoder_stack |
|
import transformer_layer as tl |
|
|
|
|
|
struct = decoder_stack.struct |
|
nn_components = decoder_stack.nn_components |
|
position = decoder_stack.position |
|
jnp = decoder_stack.jnp |
|
attention = decoder_stack.attention |
|
|
|
DStackWindowState = decoder_stack.DStackWindowState |
|
|
|
Array = Any |
|
|
|
TransformerTaskConfig = decoder_stack.TransformerTaskConfig |
|
|
|
DStackDecoderState = Tuple[tl.DecoderState, ...] |
|
|
|
|
|
@gin.configurable |
|
class DecoderStackGenerate(decoder_stack.DecoderStack): |
|
"""Stack of transformer decoder layers.""" |
|
|
|
layer_factory = tl.TransformerLayerGenerate |
|
|
|
def init_decoder_state_vanilla( |
|
self, sequence_length: int, start_of_sequence: Array |
|
) -> DStackDecoderState: |
|
"""Return initial state for autoregressive generation.""" |
|
return tuple( |
|
[ |
|
layer.init_decoder_state_vanilla(sequence_length, start_of_sequence) |
|
for layer in self.transformer_layers |
|
] |
|
) |
|
|