|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Wrapper for language modeling inference implemented in Meliad.""" |
|
from typing import Any, Dict |
|
|
|
import jax |
|
import models |
|
import t5.data |
|
from transformer import inference_utils |
|
|
|
|
|
np = jax.numpy |
|
|
|
|
|
Trainer = inference_utils.Trainer |
|
|
|
MetricsOutput = Dict[str, Any] |
|
|
|
|
|
parse_gin_configuration = inference_utils.parse_gin_configuration |
|
|
|
|
|
class LanguageModelInference: |
|
"""Meliad wrapper for LM inference.""" |
|
|
|
def __init__(self, vocab_path: str, load_dir: str, mode='beam_search'): |
|
self.vocab = t5.data.SentencePieceVocabulary(vocab_path) |
|
|
|
|
|
def null_iter_fn() -> None: |
|
return None |
|
|
|
process_summaries_f = inference_utils.models.process_summaries_function( |
|
self.vocab |
|
) |
|
|
|
trainer = inference_utils.training_loop.Trainer( |
|
get_training_dataset_iterator=null_iter_fn, |
|
get_test_dataset_iterator=None, |
|
pretty_print_input_function=None, |
|
process_summaries_function=process_summaries_f, |
|
load_dir=load_dir, |
|
workdir='', |
|
replicate_mode=False, |
|
) |
|
self.trainer = trainer |
|
|
|
|
|
(tstate, _, imodel, prngs) = trainer.initialize_model() |
|
self.imodel = imodel |
|
self.batch_size = imodel.task_config.batch_size |
|
|
|
self.n = imodel.num_heads |
|
self.h = imodel.head_size |
|
|
|
|
|
writers = {} |
|
self.task = trainer.create_training_task(mode, imodel, prngs, writers) |
|
|
|
|
|
|
|
inference_utils.training_loop.clear_interstep_callbacks() |
|
inference_utils.training_loop.register_interstep_callbacks() |
|
self.tstate = tstate |
|
|
|
|
|
eos = [0] * 1024 |
|
for idx in self.encode_list(['.', ';']): |
|
eos[idx] = 1 |
|
|
|
self.eos = np.array(eos, dtype=np.bfloat16) |
|
self.mask = jax.numpy.ones([1024], dtype=np.bfloat16) |
|
|
|
def decode(self, ids: list[int]) -> str: |
|
return self.vocab.decode(ids) |
|
|
|
def decode_list(self, tokens: list[int]) -> list[str]: |
|
return [self.decode([tok]) for tok in tokens] |
|
|
|
def encode(self, inputs_str: str) -> list[int]: |
|
return self.vocab.encode(inputs_str) |
|
|
|
def encode_list(self, inputs_strs: list[str]) -> list[int]: |
|
result = [self.vocab.encode(x) for x in inputs_strs] |
|
assert all([len(x) == 1 for x in result]), [ |
|
self.decode(x) for x in result if len(x) != 1 |
|
] |
|
return [x[0] for x in result] |
|
|
|
def call( |
|
self, |
|
inputs: np.ndarray, |
|
dstate: tuple[dict[str, np.ndarray], ...] = None, |
|
eos: np.ndarray = None, |
|
mask: np.ndarray = None, |
|
) -> MetricsOutput: |
|
"""Call the meliad model.""" |
|
batch_size, length = inputs.shape |
|
inputs = jax.numpy.pad(inputs, [(0, 0), (0, 1024 - length)]) |
|
|
|
if eos is None: |
|
eos = self.eos |
|
if mask is None: |
|
mask = self.mask |
|
|
|
x = {'targets': inputs, 'length': length, 'eos': eos, 'mask': mask} |
|
|
|
if dstate is not None: |
|
x['start_of_sequence'] = jax.numpy.array([False] * batch_size) |
|
else: |
|
dstate = tuple( |
|
[{ |
|
'current_index': np.array([0] * batch_size, dtype=np.int32), |
|
'keys': np.zeros( |
|
(batch_size, 2048, self.n, self.h), dtype=np.bfloat16 |
|
), |
|
'values': np.zeros( |
|
(batch_size, 2048, self.n, self.h), dtype=np.bfloat16 |
|
), |
|
'recurrent_kvq': None, |
|
'relative_position_bias': np.zeros( |
|
(batch_size, self.n, 1, 1024), dtype=np.bfloat16 |
|
), |
|
}] |
|
* 12 |
|
) |
|
x['start_of_sequence'] = jax.numpy.array([True] * batch_size) |
|
|
|
x['dstate'] = dstate |
|
_, metrics_np = self.task.run_step(self.tstate, x, 0) |
|
return metrics_np |
|
|
|
def beam_decode( |
|
self, |
|
inputs: str, |
|
eos_tokens: np.ndarray = None, |
|
mask_tokens: np.ndarray = None, |
|
dstate: dict[str, np.ndarray] = None, |
|
) -> MetricsOutput: |
|
"""Beam search.""" |
|
inputs = jax.numpy.array([self.vocab.encode(inputs)] * self.batch_size) |
|
|
|
eos = self.eos |
|
if eos_tokens is not None: |
|
eos_ids = self.encode_list(eos_tokens) |
|
eos = np.array( |
|
[1 if idx in eos_ids else 0 for idx in range(1024)], dtype=np.bfloat16 |
|
).reshape((1, 1, 1024)) |
|
|
|
mask = self.mask |
|
if mask_tokens is not None: |
|
mask_ids = self.encode_list(mask_tokens) |
|
mask = np.array( |
|
[0 if idx in mask_ids else 1 for idx in range(1024)], |
|
dtype=np.bfloat16, |
|
).reshape((1, 1, 1024)) |
|
|
|
metrics_np = self.call(inputs, dstate=dstate, eos=eos, mask=mask) |
|
|
|
finished_seqs = metrics_np['finished_seqs'] |
|
finished_scores = metrics_np['finished_scores'] |
|
|
|
seqs = [] |
|
scores = [] |
|
for seq, score in zip(finished_seqs, finished_scores): |
|
seq = self.decode(seq[1:]) |
|
seqs.append(seq) |
|
scores.append(score) |
|
|
|
return { |
|
'finished_seqs': finished_seqs, |
|
'finished_scores': finished_scores, |
|
'seqs_str': seqs, |
|
'scores': scores, |
|
'dstate': metrics_np['dstate'], |
|
} |
|
|