Geometry / data /lm_inference.py
introvoyz041's picture
Migrated from GitHub
f4224d0 verified
# Copyright 2023 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Wrapper for language modeling inference implemented in Meliad."""
from typing import Any, Dict
import jax
import models # pylint: disable=unused-import
import t5.data
from transformer import inference_utils
np = jax.numpy
Trainer = inference_utils.Trainer
MetricsOutput = Dict[str, Any] # Metrics output by model.
parse_gin_configuration = inference_utils.parse_gin_configuration
class LanguageModelInference:
"""Meliad wrapper for LM inference."""
def __init__(self, vocab_path: str, load_dir: str, mode='beam_search'):
self.vocab = t5.data.SentencePieceVocabulary(vocab_path)
# This task won't be pulling from a dataset.
def null_iter_fn() -> None:
return None
process_summaries_f = inference_utils.models.process_summaries_function(
self.vocab
)
trainer = inference_utils.training_loop.Trainer(
get_training_dataset_iterator=null_iter_fn,
get_test_dataset_iterator=None,
pretty_print_input_function=None,
process_summaries_function=process_summaries_f,
load_dir=load_dir,
workdir='', # Don't log or save checkpoints.
replicate_mode=False,
) # Run on a single device at batch size 1.
self.trainer = trainer
# Create and initialize the model.
(tstate, _, imodel, prngs) = trainer.initialize_model()
self.imodel = imodel
self.batch_size = imodel.task_config.batch_size
self.n = imodel.num_heads
self.h = imodel.head_size
# Create an inference task.
writers = {}
self.task = trainer.create_training_task(mode, imodel, prngs, writers) # pylint: disable=too-many-function-args
# Register any additional actions.
# Actions are cleared first for use with colab.
inference_utils.training_loop.clear_interstep_callbacks()
inference_utils.training_loop.register_interstep_callbacks()
self.tstate = tstate
# some default parameters.
eos = [0] * 1024
for idx in self.encode_list(['.', ';']):
eos[idx] = 1
self.eos = np.array(eos, dtype=np.bfloat16)
self.mask = jax.numpy.ones([1024], dtype=np.bfloat16)
def decode(self, ids: list[int]) -> str:
return self.vocab.decode(ids)
def decode_list(self, tokens: list[int]) -> list[str]:
return [self.decode([tok]) for tok in tokens]
def encode(self, inputs_str: str) -> list[int]:
return self.vocab.encode(inputs_str)
def encode_list(self, inputs_strs: list[str]) -> list[int]:
result = [self.vocab.encode(x) for x in inputs_strs]
assert all([len(x) == 1 for x in result]), [
self.decode(x) for x in result if len(x) != 1
]
return [x[0] for x in result]
def call(
self,
inputs: np.ndarray,
dstate: tuple[dict[str, np.ndarray], ...] = None,
eos: np.ndarray = None,
mask: np.ndarray = None,
) -> MetricsOutput:
"""Call the meliad model."""
batch_size, length = inputs.shape
inputs = jax.numpy.pad(inputs, [(0, 0), (0, 1024 - length)])
if eos is None:
eos = self.eos
if mask is None:
mask = self.mask
x = {'targets': inputs, 'length': length, 'eos': eos, 'mask': mask}
if dstate is not None:
x['start_of_sequence'] = jax.numpy.array([False] * batch_size)
else:
dstate = tuple(
[{ # this dummy value will never be used.
'current_index': np.array([0] * batch_size, dtype=np.int32),
'keys': np.zeros(
(batch_size, 2048, self.n, self.h), dtype=np.bfloat16
),
'values': np.zeros(
(batch_size, 2048, self.n, self.h), dtype=np.bfloat16
),
'recurrent_kvq': None,
'relative_position_bias': np.zeros(
(batch_size, self.n, 1, 1024), dtype=np.bfloat16
),
}]
* 12
)
x['start_of_sequence'] = jax.numpy.array([True] * batch_size)
x['dstate'] = dstate
_, metrics_np = self.task.run_step(self.tstate, x, 0)
return metrics_np
def beam_decode(
self,
inputs: str,
eos_tokens: np.ndarray = None,
mask_tokens: np.ndarray = None,
dstate: dict[str, np.ndarray] = None,
) -> MetricsOutput:
"""Beam search."""
inputs = jax.numpy.array([self.vocab.encode(inputs)] * self.batch_size)
eos = self.eos
if eos_tokens is not None:
eos_ids = self.encode_list(eos_tokens)
eos = np.array(
[1 if idx in eos_ids else 0 for idx in range(1024)], dtype=np.bfloat16
).reshape((1, 1, 1024))
mask = self.mask
if mask_tokens is not None:
mask_ids = self.encode_list(mask_tokens)
mask = np.array(
[0 if idx in mask_ids else 1 for idx in range(1024)],
dtype=np.bfloat16,
).reshape((1, 1, 1024))
metrics_np = self.call(inputs, dstate=dstate, eos=eos, mask=mask)
finished_seqs = metrics_np['finished_seqs']
finished_scores = metrics_np['finished_scores']
seqs = []
scores = []
for seq, score in zip(finished_seqs, finished_scores):
seq = self.decode(seq[1:])
seqs.append(seq)
scores.append(score)
return {
'finished_seqs': finished_seqs,
'finished_scores': finished_scores,
'seqs_str': seqs,
'scores': scores,
'dstate': metrics_np['dstate'],
}