|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Numerical representation of geometry.""" |
|
from __future__ import annotations |
|
|
|
import math |
|
from typing import Any, Optional, Union |
|
|
|
import geometry as gm |
|
import matplotlib |
|
from matplotlib import pyplot as plt |
|
import matplotlib.colors as mcolors |
|
import numpy as np |
|
from numpy.random import uniform as unif |
|
|
|
|
|
matplotlib.use('TkAgg') |
|
|
|
|
|
ATOM = 1e-12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Point: |
|
"""Numerical point.""" |
|
|
|
def __init__(self, x, y): |
|
self.x = x |
|
self.y = y |
|
|
|
def __lt__(self, other: Point) -> bool: |
|
return (self.x, self.y) < (other.x, other.y) |
|
|
|
def __gt__(self, other: Point) -> bool: |
|
return (self.x, self.y) > (other.x, other.y) |
|
|
|
def __add__(self, p: Point) -> Point: |
|
return Point(self.x + p.x, self.y + p.y) |
|
|
|
def __sub__(self, p: Point) -> Point: |
|
return Point(self.x - p.x, self.y - p.y) |
|
|
|
def __mul__(self, f: float) -> Point: |
|
return Point(self.x * f, self.y * f) |
|
|
|
def __rmul__(self, f: float) -> Point: |
|
return self * f |
|
|
|
def __truediv__(self, f: float) -> Point: |
|
return Point(self.x / f, self.y / f) |
|
|
|
def __floordiv__(self, f: float) -> Point: |
|
div = self / f |
|
return Point(int(div.x), int(div.y)) |
|
|
|
def __str__(self) -> str: |
|
return 'P({},{})'.format(self.x, self.y) |
|
|
|
def close(self, point: Point, tol: float = 1e-12) -> bool: |
|
return abs(self.x - point.x) < tol and abs(self.y - point.y) < tol |
|
|
|
def midpoint(self, p: Point) -> Point: |
|
return Point(0.5 * (self.x + p.x), 0.5 * (self.y + p.y)) |
|
|
|
def distance(self, p: Union[Point, Line, Circle]) -> float: |
|
if isinstance(p, Line): |
|
return p.distance(self) |
|
if isinstance(p, Circle): |
|
return abs(p.radius - self.distance(p.center)) |
|
dx = self.x - p.x |
|
dy = self.y - p.y |
|
return np.sqrt(dx * dx + dy * dy) |
|
|
|
def distance2(self, p: Point) -> float: |
|
if isinstance(p, Line): |
|
return p.distance(self) |
|
dx = self.x - p.x |
|
dy = self.y - p.y |
|
return dx * dx + dy * dy |
|
|
|
def rotatea(self, ang: float) -> Point: |
|
sinb, cosb = np.sin(ang), np.cos(ang) |
|
return self.rotate(sinb, cosb) |
|
|
|
def rotate(self, sinb: float, cosb: float) -> Point: |
|
x, y = self.x, self.y |
|
return Point(x * cosb - y * sinb, x * sinb + y * cosb) |
|
|
|
def flip(self) -> Point: |
|
return Point(-self.x, self.y) |
|
|
|
def perpendicular_line(self, line: Line) -> Line: |
|
return line.perpendicular_line(self) |
|
|
|
def foot(self, line: Line) -> Point: |
|
if isinstance(line, Line): |
|
l = line.perpendicular_line(self) |
|
return line_line_intersection(l, line) |
|
elif isinstance(line, Circle): |
|
c, r = line.center, line.radius |
|
return c + (self - c) * r / self.distance(c) |
|
raise ValueError('Dropping foot to weird type {}'.format(type(line))) |
|
|
|
def parallel_line(self, line: Line) -> Line: |
|
return line.parallel_line(self) |
|
|
|
def norm(self) -> float: |
|
return np.sqrt(self.x**2 + self.y**2) |
|
|
|
def cos(self, other: Point) -> float: |
|
x, y = self.x, self.y |
|
a, b = other.x, other.y |
|
return (x * a + y * b) / self.norm() / other.norm() |
|
|
|
def dot(self, other: Point) -> float: |
|
return self.x * other.x + self.y * other.y |
|
|
|
def sign(self, line: Line) -> int: |
|
return line.sign(self) |
|
|
|
def is_same(self, other: Point) -> bool: |
|
return self.distance(other) <= ATOM |
|
|
|
|
|
class Line: |
|
"""Numerical line.""" |
|
|
|
def __init__( |
|
self, |
|
p1: Point = None, |
|
p2: Point = None, |
|
coefficients: tuple[int, int, int] = None, |
|
): |
|
if p1 is None and p2 is None and coefficients is None: |
|
self.coefficients = None, None, None |
|
return |
|
|
|
a, b, c = coefficients or ( |
|
p1.y - p2.y, |
|
p2.x - p1.x, |
|
p1.x * p2.y - p2.x * p1.y, |
|
) |
|
|
|
|
|
|
|
|
|
if a < 0.0 or a == 0.0 and b > 0.0: |
|
a, b, c = -a, -b, -c |
|
|
|
self.coefficients = a, b, c |
|
|
|
def parallel_line(self, p: Point) -> Line: |
|
a, b, _ = self.coefficients |
|
return Line(coefficients=(a, b, -a * p.x - b * p.y)) |
|
|
|
def perpendicular_line(self, p: Point) -> Line: |
|
a, b, _ = self.coefficients |
|
return Line(p, p + Point(a, b)) |
|
|
|
def greater_than(self, other: Line) -> bool: |
|
a, b, _ = self.coefficients |
|
x, y, _ = other.coefficients |
|
|
|
return b * x > a * y |
|
|
|
def __gt__(self, other: Line) -> bool: |
|
return self.greater_than(other) |
|
|
|
def __lt__(self, other: Line) -> bool: |
|
return other.greater_than(self) |
|
|
|
def same(self, other: Line) -> bool: |
|
a, b, c = self.coefficients |
|
x, y, z = other.coefficients |
|
return close_enough(a * y, b * x) and close_enough(b * z, c * y) |
|
|
|
def equal(self, other: Line) -> bool: |
|
a, b, _ = self.coefficients |
|
x, y, _ = other.coefficients |
|
|
|
return b * x == a * y |
|
|
|
def less_than(self, other: Line) -> bool: |
|
a, b, _ = self.coefficients |
|
x, y, _ = other.coefficients |
|
|
|
return b * x < a * y |
|
|
|
def intersect(self, obj: Union[Line, Circle]) -> tuple[Point, ...]: |
|
if isinstance(obj, Line): |
|
return line_line_intersection(self, obj) |
|
if isinstance(obj, Circle): |
|
return line_circle_intersection(self, obj) |
|
|
|
def distance(self, p: Point) -> float: |
|
a, b, c = self.coefficients |
|
return abs(self(p.x, p.y)) / math.sqrt(a * a + b * b) |
|
|
|
def __call__(self, x: Point, y: Point = None) -> float: |
|
if isinstance(x, Point) and y is None: |
|
return self(x.x, x.y) |
|
a, b, c = self.coefficients |
|
return x * a + y * b + c |
|
|
|
def is_parallel(self, other: Line) -> bool: |
|
a, b, _ = self.coefficients |
|
x, y, _ = other.coefficients |
|
return abs(a * y - b * x) < ATOM |
|
|
|
def is_perp(self, other: Line) -> bool: |
|
a, b, _ = self.coefficients |
|
x, y, _ = other.coefficients |
|
return abs(a * x + b * y) < ATOM |
|
|
|
def cross(self, other: Line) -> float: |
|
a, b, _ = self.coefficients |
|
x, y, _ = other.coefficients |
|
return a * y - b * x |
|
|
|
def dot(self, other: Line) -> float: |
|
a, b, _ = self.coefficients |
|
x, y, _ = other.coefficients |
|
return a * x + b * y |
|
|
|
def point_at(self, x: float = None, y: float = None) -> Optional[Point]: |
|
"""Get a point on line closest to (x, y).""" |
|
a, b, c = self.coefficients |
|
|
|
if x is None and y is not None: |
|
if a != 0: |
|
return Point((-c - b * y) / a, y) |
|
else: |
|
return None |
|
elif x is not None and y is None: |
|
if b != 0: |
|
return Point(x, (-c - a * x) / b) |
|
else: |
|
return None |
|
elif x is not None and y is not None: |
|
if a * x + b * y + c == 0.0: |
|
return Point(x, y) |
|
return None |
|
|
|
def diff_side(self, p1: Point, p2: Point) -> Optional[bool]: |
|
d1 = self(p1.x, p1.y) |
|
d2 = self(p2.x, p2.y) |
|
if d1 == 0 or d2 == 0: |
|
return None |
|
return d1 * d2 < 0 |
|
|
|
def same_side(self, p1: Point, p2: Point) -> Optional[bool]: |
|
d1 = self(p1.x, p1.y) |
|
d2 = self(p2.x, p2.y) |
|
if d1 == 0 or d2 == 0: |
|
return None |
|
return d1 * d2 > 0 |
|
|
|
def sign(self, point: Point) -> int: |
|
s = self(point.x, point.y) |
|
if s > 0: |
|
return 1 |
|
elif s < 0: |
|
return -1 |
|
return 0 |
|
|
|
def is_same(self, other: Line) -> bool: |
|
a, b, c = self.coefficients |
|
x, y, z = other.coefficients |
|
return abs(a * y - b * x) <= ATOM and abs(b * z - c * y) <= ATOM |
|
|
|
def sample_within(self, points: list[Point], n: int = 5) -> list[Point]: |
|
"""Sample a point within the boundary of points.""" |
|
center = sum(points, Point(0.0, 0.0)) * (1.0 / len(points)) |
|
radius = max([p.distance(center) for p in points]) |
|
if close_enough(center.distance(self), radius): |
|
center = center.foot(self) |
|
a, b = line_circle_intersection(self, Circle(center.foot(self), radius)) |
|
|
|
result = None |
|
best = -1.0 |
|
for _ in range(n): |
|
rand = unif(0.0, 1.0) |
|
x = a + (b - a) * rand |
|
mind = min([x.distance(p) for p in points]) |
|
if mind > best: |
|
best = mind |
|
result = x |
|
|
|
return [result] |
|
|
|
|
|
class InvalidLineIntersectError(Exception): |
|
pass |
|
|
|
|
|
class HalfLine(Line): |
|
"""Numerical ray.""" |
|
|
|
def __init__(self, tail: Point, head: Point): |
|
self.line = Line(tail, head) |
|
self.coefficients = self.line.coefficients |
|
self.tail = tail |
|
self.head = head |
|
|
|
def intersect(self, obj: Union[Line, HalfLine, Circle, HoleCircle]) -> Point: |
|
if isinstance(obj, (HalfLine, Line)): |
|
return line_line_intersection(self.line, obj) |
|
|
|
exclude = [self.tail] |
|
if isinstance(obj, HoleCircle): |
|
exclude += [obj.hole] |
|
|
|
a, b = line_circle_intersection(self.line, obj) |
|
if any([a.close(x) for x in exclude]): |
|
return b |
|
if any([b.close(x) for x in exclude]): |
|
return a |
|
|
|
v = self.head - self.tail |
|
va = a - self.tail |
|
vb = b - self.tail |
|
if v.dot(va) > 0: |
|
return a |
|
if v.dot(vb) > 0: |
|
return b |
|
raise InvalidLineIntersectError() |
|
|
|
def sample_within(self, points: list[Point], n: int = 5) -> list[Point]: |
|
center = sum(points, Point(0.0, 0.0)) * (1.0 / len(points)) |
|
radius = max([p.distance(center) for p in points]) |
|
if close_enough(center.distance(self.line), radius): |
|
center = center.foot(self) |
|
a, b = line_circle_intersection(self, Circle(center.foot(self), radius)) |
|
|
|
if (a - self.tail).dot(self.head - self.tail) > 0: |
|
a, b = self.tail, a |
|
else: |
|
a, b = self.tail, b |
|
|
|
result = None |
|
best = -1.0 |
|
for _ in range(n): |
|
x = a + (b - a) * unif(0.0, 1.0) |
|
mind = min([x.distance(p) for p in points]) |
|
if mind > best: |
|
best = mind |
|
result = x |
|
|
|
return [result] |
|
|
|
|
|
def _perpendicular_bisector(p1: Point, p2: Point) -> Line: |
|
midpoint = (p1 + p2) * 0.5 |
|
return Line(midpoint, midpoint + Point(p2.y - p1.y, p1.x - p2.x)) |
|
|
|
|
|
def same_sign( |
|
a: Point, b: Point, c: Point, d: Point, e: Point, f: Point |
|
) -> bool: |
|
a, b, c, d, e, f = map(lambda p: p.sym, [a, b, c, d, e, f]) |
|
ab, cb = a - b, c - b |
|
de, fe = d - e, f - e |
|
return (ab.x * cb.y - ab.y * cb.x) * (de.x * fe.y - de.y * fe.x) > 0 |
|
|
|
|
|
class Circle: |
|
"""Numerical circle.""" |
|
|
|
def __init__( |
|
self, |
|
center: Optional[Point] = None, |
|
radius: Optional[float] = None, |
|
p1: Optional[Point] = None, |
|
p2: Optional[Point] = None, |
|
p3: Optional[Point] = None, |
|
): |
|
if not center: |
|
if not (p1 and p2 and p3): |
|
self.center = self.radius = self.r2 = None |
|
return |
|
|
|
|
|
l12 = _perpendicular_bisector(p1, p2) |
|
l23 = _perpendicular_bisector(p2, p3) |
|
center = line_line_intersection(l12, l23) |
|
|
|
self.center = center |
|
self.a, self.b = center.x, center.y |
|
|
|
if not radius: |
|
if not (p1 or p2 or p3): |
|
raise ValueError('Circle needs radius or p1 or p2 or p3') |
|
p = p1 or p2 or p3 |
|
self.r2 = (self.a - p.x) ** 2 + (self.b - p.y) ** 2 |
|
self.radius = math.sqrt(self.r2) |
|
else: |
|
self.radius = radius |
|
self.r2 = radius * radius |
|
|
|
def intersect(self, obj: Union[Line, Circle]) -> tuple[Point, ...]: |
|
if isinstance(obj, Line): |
|
return obj.intersect(self) |
|
if isinstance(obj, Circle): |
|
return circle_circle_intersection(self, obj) |
|
|
|
def sample_within(self, points: list[Point], n: int = 5) -> list[Point]: |
|
"""Sample a point within the boundary of points.""" |
|
result = None |
|
best = -1.0 |
|
for _ in range(n): |
|
ang = unif(0.0, 2.0) * np.pi |
|
x = self.center + Point(np.cos(ang), np.sin(ang)) * self.radius |
|
mind = min([x.distance(p) for p in points]) |
|
if mind > best: |
|
best = mind |
|
result = x |
|
|
|
return [result] |
|
|
|
|
|
class HoleCircle(Circle): |
|
"""Numerical circle with a missing point.""" |
|
|
|
def __init__(self, center: Point, radius: float, hole: Point): |
|
super().__init__(center, radius) |
|
self.hole = hole |
|
|
|
def intersect(self, obj: Union[Line, HalfLine, Circle, HoleCircle]) -> Point: |
|
if isinstance(obj, Line): |
|
a, b = line_circle_intersection(obj, self) |
|
if a.close(self.hole): |
|
return b |
|
return a |
|
if isinstance(obj, HalfLine): |
|
return obj.intersect(self) |
|
if isinstance(obj, Circle): |
|
a, b = circle_circle_intersection(obj, self) |
|
if a.close(self.hole): |
|
return b |
|
return a |
|
if isinstance(obj, HoleCircle): |
|
a, b = circle_circle_intersection(obj, self) |
|
if a.close(self.hole) or a.close(obj.hole): |
|
return b |
|
return a |
|
|
|
|
|
def solve_quad(a: float, b: float, c: float) -> tuple[float, float]: |
|
"""Solve a x^2 + bx + c = 0.""" |
|
a = 2 * a |
|
d = b * b - 2 * a * c |
|
if d < 0: |
|
return None |
|
|
|
y = math.sqrt(d) |
|
return (-b - y) / a, (-b + y) / a |
|
|
|
|
|
def circle_circle_intersection(c1: Circle, c2: Circle) -> tuple[Point, Point]: |
|
"""Returns a pair of Points as intersections of c1 and c2.""" |
|
|
|
|
|
x0, y0, r0 = c1.a, c1.b, c1.radius |
|
x1, y1, r1 = c2.a, c2.b, c2.radius |
|
|
|
d = math.sqrt((x1 - x0) ** 2 + (y1 - y0) ** 2) |
|
if d == 0: |
|
raise InvalidQuadSolveError() |
|
|
|
a = (r0**2 - r1**2 + d**2) / (2 * d) |
|
h = r0**2 - a**2 |
|
if h < 0: |
|
raise InvalidQuadSolveError() |
|
h = np.sqrt(h) |
|
x2 = x0 + a * (x1 - x0) / d |
|
y2 = y0 + a * (y1 - y0) / d |
|
x3 = x2 + h * (y1 - y0) / d |
|
y3 = y2 - h * (x1 - x0) / d |
|
x4 = x2 - h * (y1 - y0) / d |
|
y4 = y2 + h * (x1 - x0) / d |
|
|
|
return Point(x3, y3), Point(x4, y4) |
|
|
|
|
|
class InvalidQuadSolveError(Exception): |
|
pass |
|
|
|
|
|
def line_circle_intersection(line: Line, circle: Circle) -> tuple[Point, Point]: |
|
"""Returns a pair of points as intersections of line and circle.""" |
|
a, b, c = line.coefficients |
|
r = float(circle.radius) |
|
center = circle.center |
|
p, q = center.x, center.y |
|
|
|
if b == 0: |
|
x = -c / a |
|
x_p = x - p |
|
x_p2 = x_p * x_p |
|
y = solve_quad(1, -2 * q, q * q + x_p2 - r * r) |
|
if y is None: |
|
raise InvalidQuadSolveError() |
|
y1, y2 = y |
|
return (Point(x, y1), Point(x, y2)) |
|
|
|
if a == 0: |
|
y = -c / b |
|
y_q = y - q |
|
y_q2 = y_q * y_q |
|
x = solve_quad(1, -2 * p, p * p + y_q2 - r * r) |
|
if x is None: |
|
raise InvalidQuadSolveError() |
|
x1, x2 = x |
|
return (Point(x1, y), Point(x2, y)) |
|
|
|
c_ap = c + a * p |
|
a2 = a * a |
|
y = solve_quad( |
|
a2 + b * b, 2 * (b * c_ap - a2 * q), c_ap * c_ap + a2 * (q * q - r * r) |
|
) |
|
if y is None: |
|
raise InvalidQuadSolveError() |
|
y1, y2 = y |
|
|
|
return Point(-(b * y1 + c) / a, y1), Point(-(b * y2 + c) / a, y2) |
|
|
|
|
|
def _check_between(a: Point, b: Point, c: Point) -> bool: |
|
"""Whether a is between b & c.""" |
|
return (a - b).dot(c - b) > 0 and (a - c).dot(b - c) > 0 |
|
|
|
|
|
def circle_segment_intersect( |
|
circle: Circle, p1: Point, p2: Point |
|
) -> list[Point]: |
|
l = Line(p1, p2) |
|
px, py = line_circle_intersection(l, circle) |
|
|
|
result = [] |
|
if _check_between(px, p1, p2): |
|
result.append(px) |
|
if _check_between(py, p1, p2): |
|
result.append(py) |
|
return result |
|
|
|
|
|
def line_segment_intersection(l: Line, A: Point, B: Point) -> Point: |
|
a, b, c = l.coefficients |
|
x1, y1, x2, y2 = A.x, A.y, B.x, B.y |
|
dx, dy = x2 - x1, y2 - y1 |
|
alpha = (-c - a * x1 - b * y1) / (a * dx + b * dy) |
|
return Point(x1 + alpha * dx, y1 + alpha * dy) |
|
|
|
|
|
def line_line_intersection(l1: Line, l2: Line) -> Point: |
|
a1, b1, c1 = l1.coefficients |
|
a2, b2, c2 = l2.coefficients |
|
|
|
|
|
d = a1 * b2 - a2 * b1 |
|
if d == 0: |
|
raise InvalidLineIntersectError |
|
return Point((c2 * b1 - c1 * b2) / d, (c1 * a2 - c2 * a1) / d) |
|
|
|
|
|
def check_too_close( |
|
newpoints: list[Point], points: list[Point], tol: int = 0.1 |
|
) -> bool: |
|
if not points: |
|
return False |
|
avg = sum(points, Point(0.0, 0.0)) * 1.0 / len(points) |
|
mindist = min([p.distance(avg) for p in points]) |
|
for p0 in newpoints: |
|
for p1 in points: |
|
if p0.distance(p1) < tol * mindist: |
|
return True |
|
return False |
|
|
|
|
|
def check_too_far( |
|
newpoints: list[Point], points: list[Point], tol: int = 4 |
|
) -> bool: |
|
if len(points) < 2: |
|
return False |
|
avg = sum(points, Point(0.0, 0.0)) * 1.0 / len(points) |
|
maxdist = max([p.distance(avg) for p in points]) |
|
for p in newpoints: |
|
if p.distance(avg) > maxdist * tol: |
|
return True |
|
return False |
|
|
|
|
|
def check_aconst(args: list[Point]) -> bool: |
|
a, b, c, d, num, den = args |
|
d = d + a - c |
|
ang = ang_between(a, b, d) |
|
if ang < 0: |
|
ang += np.pi |
|
return close_enough(ang, num * np.pi / den) |
|
|
|
|
|
def check(name: str, args: list[Union[gm.Point, Point]]) -> bool: |
|
"""Numerical check.""" |
|
if name == 'eqangle6': |
|
name = 'eqangle' |
|
elif name == 'eqratio6': |
|
name = 'eqratio' |
|
elif name in ['simtri2', 'simtri*']: |
|
name = 'simtri' |
|
elif name in ['contri2', 'contri*']: |
|
name = 'contri' |
|
elif name == 'para': |
|
name = 'para_or_coll' |
|
elif name == 'on_line': |
|
name = 'coll' |
|
elif name in ['rcompute', 'acompute']: |
|
return True |
|
elif name in ['fixl', 'fixc', 'fixb', 'fixt', 'fixp']: |
|
return True |
|
|
|
fn_name = 'check_' + name |
|
if fn_name not in globals(): |
|
return None |
|
|
|
fun = globals()['check_' + name] |
|
args = [p.num if isinstance(p, gm.Point) else p for p in args] |
|
return fun(args) |
|
|
|
|
|
def check_circle(points: list[Point]) -> bool: |
|
if len(points) != 4: |
|
return False |
|
o, a, b, c = points |
|
oa, ob, oc = o.distance(a), o.distance(b), o.distance(c) |
|
return close_enough(oa, ob) and close_enough(ob, oc) |
|
|
|
|
|
def check_coll(points: list[Point]) -> bool: |
|
a, b = points[:2] |
|
l = Line(a, b) |
|
for p in points[2:]: |
|
if abs(l(p.x, p.y)) > ATOM: |
|
return False |
|
return True |
|
|
|
|
|
def check_ncoll(points: list[Point]) -> bool: |
|
return not check_coll(points) |
|
|
|
|
|
def check_sameside(points: list[Point]) -> bool: |
|
b, a, c, y, x, z = points |
|
|
|
ba = b - a |
|
bc = b - c |
|
yx = y - x |
|
yz = y - z |
|
return ba.dot(bc) * yx.dot(yz) > 0 |
|
|
|
|
|
def check_para_or_coll(points: list[Point]) -> bool: |
|
return check_para(points) or check_coll(points) |
|
|
|
|
|
def check_para(points: list[Point]) -> bool: |
|
a, b, c, d = points |
|
ab = Line(a, b) |
|
cd = Line(c, d) |
|
if ab.same(cd): |
|
return False |
|
return ab.is_parallel(cd) |
|
|
|
|
|
def check_perp(points: list[Point]) -> bool: |
|
a, b, c, d = points |
|
ab = Line(a, b) |
|
cd = Line(c, d) |
|
return ab.is_perp(cd) |
|
|
|
|
|
def check_cyclic(points: list[Point]) -> bool: |
|
points = list(set(points)) |
|
(a, b, c), *ps = points |
|
circle = Circle(p1=a, p2=b, p3=c) |
|
for d in ps: |
|
if not close_enough(d.distance(circle.center), circle.radius): |
|
return False |
|
return True |
|
|
|
|
|
def bring_together( |
|
a: Point, b: Point, c: Point, d: Point |
|
) -> tuple[Point, Point, Point, Point]: |
|
ab = Line(a, b) |
|
cd = Line(c, d) |
|
x = line_line_intersection(ab, cd) |
|
unit = Circle(center=x, radius=1.0) |
|
y, _ = line_circle_intersection(ab, unit) |
|
z, _ = line_circle_intersection(cd, unit) |
|
return x, y, x, z |
|
|
|
|
|
def same_clock( |
|
a: Point, b: Point, c: Point, d: Point, e: Point, f: Point |
|
) -> bool: |
|
ba = b - a |
|
cb = c - b |
|
ed = e - d |
|
fe = f - e |
|
return (ba.x * cb.y - ba.y * cb.x) * (ed.x * fe.y - ed.y * fe.x) > 0 |
|
|
|
|
|
def check_const_angle(points: list[Point]) -> bool: |
|
"""Check if the angle is equal to the given constant.""" |
|
a, b, c, d, m, n = points |
|
a, b, c, d = bring_together(a, b, c, d) |
|
ba = b - a |
|
dc = d - c |
|
|
|
a3 = np.arctan2(ba.y, ba.x) |
|
a4 = np.arctan2(dc.y, dc.x) |
|
y = a3 - a4 |
|
|
|
return close_enough(m / n % 1, y / np.pi % 1) |
|
|
|
|
|
def check_eqangle(points: list[Point]) -> bool: |
|
"""Check if 8 points make 2 equal angles.""" |
|
a, b, c, d, e, f, g, h = points |
|
|
|
ab = Line(a, b) |
|
cd = Line(c, d) |
|
ef = Line(e, f) |
|
gh = Line(g, h) |
|
|
|
if ab.is_parallel(cd): |
|
return ef.is_parallel(gh) |
|
if ef.is_parallel(gh): |
|
return ab.is_parallel(cd) |
|
|
|
a, b, c, d = bring_together(a, b, c, d) |
|
e, f, g, h = bring_together(e, f, g, h) |
|
|
|
ba = b - a |
|
dc = d - c |
|
fe = f - e |
|
hg = h - g |
|
|
|
sameclock = (ba.x * dc.y - ba.y * dc.x) * (fe.x * hg.y - fe.y * hg.x) > 0 |
|
if not sameclock: |
|
ba = ba * -1.0 |
|
|
|
a1 = np.arctan2(fe.y, fe.x) |
|
a2 = np.arctan2(hg.y, hg.x) |
|
x = a1 - a2 |
|
|
|
a3 = np.arctan2(ba.y, ba.x) |
|
a4 = np.arctan2(dc.y, dc.x) |
|
y = a3 - a4 |
|
|
|
xy = (x - y) % (2 * np.pi) |
|
return close_enough(xy, 0, tol=1e-11) or close_enough( |
|
xy, 2 * np.pi, tol=1e-11 |
|
) |
|
|
|
|
|
def check_eqratio(points: list[Point]) -> bool: |
|
a, b, c, d, e, f, g, h = points |
|
ab = a.distance(b) |
|
cd = c.distance(d) |
|
ef = e.distance(f) |
|
gh = g.distance(h) |
|
return close_enough(ab * gh, cd * ef) |
|
|
|
|
|
def check_cong(points: list[Point]) -> bool: |
|
a, b, c, d = points |
|
return close_enough(a.distance(b), c.distance(d)) |
|
|
|
|
|
def check_midp(points: list[Point]) -> bool: |
|
a, b, c = points |
|
return check_coll(points) and close_enough(a.distance(b), a.distance(c)) |
|
|
|
|
|
def check_simtri(points: list[Point]) -> bool: |
|
"""Check if 6 points make a pair of similar triangles.""" |
|
a, b, c, x, y, z = points |
|
ab = a.distance(b) |
|
bc = b.distance(c) |
|
ca = c.distance(a) |
|
xy = x.distance(y) |
|
yz = y.distance(z) |
|
zx = z.distance(x) |
|
tol = 1e-9 |
|
return close_enough(ab * yz, bc * xy, tol) and close_enough( |
|
bc * zx, ca * yz, tol |
|
) |
|
|
|
|
|
def check_contri(points: list[Point]) -> bool: |
|
a, b, c, x, y, z = points |
|
ab = a.distance(b) |
|
bc = b.distance(c) |
|
ca = c.distance(a) |
|
xy = x.distance(y) |
|
yz = y.distance(z) |
|
zx = z.distance(x) |
|
tol = 1e-9 |
|
return ( |
|
close_enough(ab, xy, tol) |
|
and close_enough(bc, yz, tol) |
|
and close_enough(ca, zx, tol) |
|
) |
|
|
|
|
|
def check_ratio(points: list[Point]) -> bool: |
|
a, b, c, d, m, n = points |
|
ab = a.distance(b) |
|
cd = c.distance(d) |
|
return close_enough(ab * n, cd * m) |
|
|
|
|
|
def draw_angle( |
|
ax: matplotlib.axes.Axes, |
|
head: Point, |
|
p1: Point, |
|
p2: Point, |
|
color: Any = 'red', |
|
alpha: float = 0.5, |
|
frac: float = 1.0, |
|
) -> None: |
|
"""Draw an angle on plt ax.""" |
|
d1 = p1 - head |
|
d2 = p2 - head |
|
|
|
a1 = np.arctan2(float(d1.y), float(d1.x)) |
|
a2 = np.arctan2(float(d2.y), float(d2.x)) |
|
a1, a2 = a1 * 180 / np.pi, a2 * 180 / np.pi |
|
a1, a2 = a1 % 360, a2 % 360 |
|
|
|
if a1 > a2: |
|
a1, a2 = a2, a1 |
|
|
|
if a2 - a1 > 180: |
|
a1, a2 = a2, a1 |
|
|
|
b1, b2 = a1, a2 |
|
if b1 > b2: |
|
b2 += 360 |
|
d = b2 - b1 |
|
|
|
|
|
|
|
scale = min(2.0, 90 / d) |
|
scale = max(scale, 0.4) |
|
fov = matplotlib.patches.Wedge( |
|
(float(head.x), float(head.y)), |
|
unif(0.075, 0.125) * scale * frac, |
|
a1, |
|
a2, |
|
color=color, |
|
alpha=alpha, |
|
) |
|
ax.add_artist(fov) |
|
|
|
|
|
def naming_position( |
|
ax: matplotlib.axes.Axes, p: Point, lines: list[Line], circles: list[Circle] |
|
) -> tuple[float, float]: |
|
"""Figure out a good naming position on the drawing.""" |
|
_ = ax |
|
r = 0.08 |
|
c = Circle(center=p, radius=r) |
|
avoid = [] |
|
for p1, p2 in lines: |
|
try: |
|
avoid.extend(circle_segment_intersect(c, p1, p2)) |
|
except InvalidQuadSolveError: |
|
continue |
|
for x in circles: |
|
try: |
|
avoid.extend(circle_circle_intersection(c, x)) |
|
except InvalidQuadSolveError: |
|
continue |
|
|
|
if not avoid: |
|
return [p.x + 0.01, p.y + 0.01] |
|
|
|
angs = sorted([ang_of(p, a) for a in avoid]) |
|
angs += [angs[0] + 2 * np.pi] |
|
angs = [(angs[i + 1] - a, a) for i, a in enumerate(angs[:-1])] |
|
|
|
d, a = max(angs) |
|
ang = a + d / 2 |
|
|
|
name_pos = p + Point(np.cos(ang), np.sin(ang)) * r |
|
|
|
x, y = (name_pos.x - r / 1.5, name_pos.y - r / 1.5) |
|
return x, y |
|
|
|
|
|
def draw_point( |
|
ax: matplotlib.axes.Axes, |
|
p: Point, |
|
name: str, |
|
lines: list[Line], |
|
circles: list[Circle], |
|
color: Any = 'white', |
|
size: float = 15, |
|
) -> None: |
|
"""draw a point.""" |
|
ax.scatter(p.x, p.y, color=color, s=size) |
|
|
|
if color == 'white': |
|
color = 'lightgreen' |
|
else: |
|
color = 'grey' |
|
|
|
name = name.upper() |
|
if len(name) > 1: |
|
name = name[0] + '_' + name[1:] |
|
|
|
ax.annotate( |
|
name, naming_position(ax, p, lines, circles), color=color, fontsize=15 |
|
) |
|
|
|
|
|
def _draw_line( |
|
ax: matplotlib.axes.Axes, |
|
p1: Point, |
|
p2: Point, |
|
color: Any = 'white', |
|
lw: float = 1.2, |
|
alpha: float = 0.8, |
|
) -> None: |
|
"""Draw a line in matplotlib.""" |
|
ls = '-' |
|
if color == '--': |
|
color = 'black' |
|
ls = '--' |
|
|
|
lx, ly = (p1.x, p2.x), (p1.y, p2.y) |
|
ax.plot(lx, ly, color=color, lw=lw, alpha=alpha, ls=ls) |
|
|
|
|
|
def draw_line( |
|
ax: matplotlib.axes.Axes, line: Line, color: Any = 'white' |
|
) -> tuple[Point, Point]: |
|
"""Draw a line.""" |
|
points = line.neighbors(gm.Point) |
|
if len(points) <= 1: |
|
return |
|
|
|
points = [p.num for p in points] |
|
p1, p2 = points[:2] |
|
|
|
pmin, pmax = (p1, 0.0), (p2, (p2 - p1).dot(p2 - p1)) |
|
|
|
for p in points[2:]: |
|
v = (p - p1).dot(p2 - p1) |
|
if v < pmin[1]: |
|
pmin = p, v |
|
if v > pmax[1]: |
|
pmax = p, v |
|
|
|
p1, p2 = pmin[0], pmax[0] |
|
_draw_line(ax, p1, p2, color=color) |
|
return p1, p2 |
|
|
|
|
|
def _draw_circle( |
|
ax: matplotlib.axes.Axes, c: Circle, color: Any = 'cyan', lw: float = 1.2 |
|
) -> None: |
|
ls = '-' |
|
if color == '--': |
|
color = 'black' |
|
ls = '--' |
|
|
|
ax.add_patch( |
|
plt.Circle( |
|
(c.center.x, c.center.y), |
|
c.radius, |
|
color=color, |
|
alpha=0.8, |
|
fill=False, |
|
lw=lw, |
|
ls=ls, |
|
) |
|
) |
|
|
|
|
|
def draw_circle( |
|
ax: matplotlib.axes.Axes, circle: Circle, color: Any = 'cyan' |
|
) -> Circle: |
|
"""Draw a circle.""" |
|
if circle.num is not None: |
|
circle = circle.num |
|
else: |
|
points = circle.neighbors(gm.Point) |
|
if len(points) <= 2: |
|
return |
|
points = [p.num for p in points] |
|
p1, p2, p3 = points[:3] |
|
circle = Circle(p1=p1, p2=p2, p3=p3) |
|
|
|
_draw_circle(ax, circle, color) |
|
return circle |
|
|
|
|
|
def mark_segment( |
|
ax: matplotlib.axes.Axes, p1: Point, p2: Point, color: Any, alpha: float |
|
) -> None: |
|
_ = alpha |
|
x, y = (p1.x + p2.x) / 2, (p1.y + p2.y) / 2 |
|
ax.scatter(x, y, color=color, alpha=1.0, marker='o', s=50) |
|
|
|
|
|
def highlight_angle( |
|
ax: matplotlib.axes.Axes, |
|
a: Point, |
|
b: Point, |
|
c: Point, |
|
d: Point, |
|
color: Any, |
|
alpha: float, |
|
) -> None: |
|
"""Highlight an angle between ab and cd with (color, alpha).""" |
|
try: |
|
a, b, c, d = bring_together(a, b, c, d) |
|
except: |
|
return |
|
draw_angle(ax, a, b, d, color=color, alpha=alpha, frac=1.0) |
|
|
|
|
|
def highlight( |
|
ax: matplotlib.axes.Axes, |
|
name: str, |
|
args: list[gm.Point], |
|
lcolor: Any, |
|
color1: Any, |
|
color2: Any, |
|
) -> None: |
|
"""Draw highlights.""" |
|
args = list(map(lambda x: x.num if isinstance(x, gm.Point) else x, args)) |
|
|
|
if name == 'cyclic': |
|
a, b, c, d = args |
|
_draw_circle(ax, Circle(p1=a, p2=b, p3=c), color=color1, lw=2.0) |
|
if name == 'coll': |
|
a, b, c = args |
|
a, b = max(a, b, c), min(a, b, c) |
|
_draw_line(ax, a, b, color=color1, lw=2.0) |
|
if name == 'para': |
|
a, b, c, d = args |
|
_draw_line(ax, a, b, color=color1, lw=2.0) |
|
_draw_line(ax, c, d, color=color2, lw=2.0) |
|
if name == 'eqangle': |
|
a, b, c, d, e, f, g, h = args |
|
|
|
x = line_line_intersection(Line(a, b), Line(c, d)) |
|
if b.distance(x) > a.distance(x): |
|
a, b = b, a |
|
if d.distance(x) > c.distance(x): |
|
c, d = d, c |
|
a, b, d = x, a, c |
|
|
|
y = line_line_intersection(Line(e, f), Line(g, h)) |
|
if f.distance(y) > e.distance(y): |
|
e, f = f, e |
|
if h.distance(y) > g.distance(y): |
|
g, h = h, g |
|
e, f, h = y, e, g |
|
|
|
_draw_line(ax, a, b, color=lcolor, lw=2.0) |
|
_draw_line(ax, a, d, color=lcolor, lw=2.0) |
|
_draw_line(ax, e, f, color=lcolor, lw=2.0) |
|
_draw_line(ax, e, h, color=lcolor, lw=2.0) |
|
if color1 == '--': |
|
color1 = 'red' |
|
draw_angle(ax, a, b, d, color=color1, alpha=0.5) |
|
if color2 == '--': |
|
color2 = 'red' |
|
draw_angle(ax, e, f, h, color=color2, alpha=0.5) |
|
if name == 'perp': |
|
a, b, c, d = args |
|
_draw_line(ax, a, b, color=color1, lw=2.0) |
|
_draw_line(ax, c, d, color=color1, lw=2.0) |
|
if name == 'ratio': |
|
a, b, c, d, m, n = args |
|
_draw_line(ax, a, b, color=color1, lw=2.0) |
|
_draw_line(ax, c, d, color=color2, lw=2.0) |
|
if name == 'cong': |
|
a, b, c, d = args |
|
_draw_line(ax, a, b, color=color1, lw=2.0) |
|
_draw_line(ax, c, d, color=color2, lw=2.0) |
|
if name == 'midp': |
|
m, a, b = args |
|
_draw_line(ax, a, m, color=color1, lw=2.0, alpha=0.5) |
|
_draw_line(ax, b, m, color=color2, lw=2.0, alpha=0.5) |
|
if name == 'eqratio': |
|
a, b, c, d, m, n, p, q = args |
|
_draw_line(ax, a, b, color=color1, lw=2.0, alpha=0.5) |
|
_draw_line(ax, c, d, color=color2, lw=2.0, alpha=0.5) |
|
_draw_line(ax, m, n, color=color1, lw=2.0, alpha=0.5) |
|
_draw_line(ax, p, q, color=color2, lw=2.0, alpha=0.5) |
|
|
|
|
|
HCOLORS = None |
|
|
|
|
|
def _draw( |
|
ax: matplotlib.axes.Axes, |
|
points: list[gm.Point], |
|
lines: list[gm.Line], |
|
circles: list[gm.Circle], |
|
goal: Any, |
|
equals: list[tuple[Any, Any]], |
|
highlights: list[tuple[str, list[gm.Point]]], |
|
): |
|
"""Draw everything.""" |
|
colors = ['red', 'green', 'blue', 'orange', 'magenta', 'purple'] |
|
pcolor = 'black' |
|
lcolor = 'black' |
|
ccolor = 'grey' |
|
if get_theme() == 'dark': |
|
pcolor, lcolor, ccolor = 'white', 'white', 'cyan' |
|
elif get_theme() == 'light': |
|
pcolor, lcolor, ccolor = 'black', 'black', 'blue' |
|
elif get_theme() == 'grey': |
|
pcolor, lcolor, ccolor = 'black', 'black', 'grey' |
|
colors = ['grey'] |
|
|
|
line_boundaries = [] |
|
for l in lines: |
|
p1, p2 = draw_line(ax, l, color=lcolor) |
|
line_boundaries.append((p1, p2)) |
|
circles = [draw_circle(ax, c, color=ccolor) for c in circles] |
|
|
|
for p in points: |
|
draw_point(ax, p.num, p.name, line_boundaries, circles, color=pcolor) |
|
|
|
if equals: |
|
for i, segs in enumerate(equals['segments']): |
|
color = colors[i % len(colors)] |
|
for a, b in segs: |
|
mark_segment(ax, a, b, color, 0.5) |
|
|
|
for i, angs in enumerate(equals['angles']): |
|
color = colors[i % len(colors)] |
|
for a, b, c, d in angs: |
|
highlight_angle(ax, a, b, c, d, color, 0.5) |
|
|
|
if highlights: |
|
global HCOLORS |
|
if HCOLORS is None: |
|
HCOLORS = [k for k in mcolors.TABLEAU_COLORS.keys() if 'red' not in k] |
|
|
|
for i, (name, args) in enumerate(highlights): |
|
color_i = HCOLORS[i % len(HCOLORS)] |
|
highlight(ax, name, args, 'black', color_i, color_i) |
|
|
|
if goal: |
|
name, args = goal |
|
lcolor = color1 = color2 = 'red' |
|
highlight(ax, name, args, lcolor, color1, color2) |
|
|
|
|
|
THEME = 'dark' |
|
|
|
|
|
def set_theme(theme) -> None: |
|
global THEME |
|
THEME = theme |
|
|
|
|
|
def get_theme() -> str: |
|
return THEME |
|
|
|
|
|
def draw( |
|
points: list[gm.Point], |
|
lines: list[gm.Line], |
|
circles: list[gm.Circle], |
|
segments: list[gm.Segment], |
|
goal: Any = None, |
|
highlights: list[tuple[str, list[gm.Point]]] = None, |
|
equals: list[tuple[Any, Any]] = None, |
|
block: bool = True, |
|
save_to: str = None, |
|
theme: str = 'dark', |
|
) -> None: |
|
"""Draw everything on the same canvas.""" |
|
plt.close() |
|
imsize = 512 / 100 |
|
fig, ax = plt.subplots(figsize=(imsize, imsize), dpi=100) |
|
|
|
set_theme(theme) |
|
|
|
if get_theme() == 'dark': |
|
ax.set_facecolor((0.0, 0.0, 0.0)) |
|
else: |
|
ax.set_facecolor((1.0, 1.0, 1.0)) |
|
|
|
_draw(ax, points, lines, circles, goal, equals, highlights) |
|
|
|
plt.axis('equal') |
|
fig.subplots_adjust(left=0, right=1, top=1, bottom=0, wspace=0, hspace=0) |
|
if points: |
|
xmin = min([p.num.x for p in points]) |
|
xmax = max([p.num.x for p in points]) |
|
ymin = min([p.num.y for p in points]) |
|
ymax = max([p.num.y for p in points]) |
|
plt.margins((xmax - xmin) * 0.1, (ymax - ymin) * 0.1) |
|
|
|
plt.show(block=block) |
|
|
|
|
|
def close_enough(a: float, b: float, tol: float = 1e-12) -> bool: |
|
return abs(a - b) < tol |
|
|
|
|
|
def assert_close_enough(a: float, b: float, tol: float = 1e-12) -> None: |
|
assert close_enough(a, b, tol), f'|{a}-{b}| = {abs(a-b)} >= {tol}' |
|
|
|
|
|
def ang_of(tail: Point, head: Point) -> float: |
|
vector = head - tail |
|
arctan = np.arctan2(vector.y, vector.x) % (2 * np.pi) |
|
return arctan |
|
|
|
|
|
def ang_between(tail: Point, head1: Point, head2: Point) -> float: |
|
ang1 = ang_of(tail, head1) |
|
ang2 = ang_of(tail, head2) |
|
diff = ang1 - ang2 |
|
|
|
if diff > np.pi: |
|
return diff - 2 * np.pi |
|
if diff < -np.pi: |
|
return 2 * np.pi + diff |
|
return diff |
|
|
|
|
|
def head_from(tail: Point, ang: float, length: float = 1) -> Point: |
|
vector = Point(np.cos(ang) * length, np.sin(ang) * length) |
|
return tail + vector |
|
|
|
|
|
def random_points(n: int = 3) -> list[Point]: |
|
return [Point(unif(-1, 1), unif(-1, 1)) for _ in range(n)] |
|
|
|
|
|
def random_rfss(*points: list[Point]) -> list[Point]: |
|
"""Random rotate-flip-scale-shift a point cloud.""" |
|
|
|
average = sum(points, Point(0.0, 0.0)) * (1.0 / len(points)) |
|
points = [p - average for p in points] |
|
|
|
|
|
ang = unif(0.0, 2 * np.pi) |
|
sin, cos = np.sin(ang), np.cos(ang) |
|
|
|
scale = unif(0.5, 2.0) |
|
shift = Point(unif(-1, 1), unif(-1, 1)) |
|
points = [p.rotate(sin, cos) * scale + shift for p in points] |
|
|
|
|
|
if np.random.rand() < 0.5: |
|
points = [p.flip() for p in points] |
|
|
|
return points |
|
|
|
|
|
def reduce( |
|
objs: list[Union[Point, Line, Circle, HalfLine, HoleCircle]], |
|
existing_points: list[Point], |
|
) -> list[Point]: |
|
"""Reduce intersecting objects into one point of intersections.""" |
|
if all(isinstance(o, Point) for o in objs): |
|
return objs |
|
|
|
elif len(objs) == 1: |
|
return objs[0].sample_within(existing_points) |
|
|
|
elif len(objs) == 2: |
|
a, b = objs |
|
result = a.intersect(b) |
|
if isinstance(result, Point): |
|
return [result] |
|
a, b = result |
|
a_close = any([a.close(x) for x in existing_points]) |
|
if a_close: |
|
return [b] |
|
b_close = any([b.close(x) for x in existing_points]) |
|
if b_close: |
|
return [a] |
|
return [np.random.choice([a, b])] |
|
|
|
else: |
|
raise ValueError(f'Cannot reduce {objs}') |
|
|
|
|
|
def sketch( |
|
name: str, args: list[Union[Point, gm.Point]] |
|
) -> list[Union[Point, Line, Circle, HalfLine, HoleCircle]]: |
|
fun = globals()['sketch_' + name] |
|
args = [p.num if isinstance(p, gm.Point) else p for p in args] |
|
out = fun(args) |
|
|
|
|
|
if isinstance(out, (tuple, list)): |
|
return list(out) |
|
return [out] |
|
|
|
|
|
def sketch_on_opline(args: tuple[gm.Point, ...]) -> HalfLine: |
|
a, b = args |
|
return HalfLine(a, a + a - b) |
|
|
|
|
|
def sketch_on_hline(args: tuple[gm.Point, ...]) -> HalfLine: |
|
a, b = args |
|
return HalfLine(a, b) |
|
|
|
|
|
def sketch_ieq_triangle(args: tuple[gm.Point, ...]) -> tuple[Point, ...]: |
|
a = Point(0.0, 0.0) |
|
b = Point(1.0, 0.0) |
|
|
|
c, _ = Circle(a, p1=b).intersect(Circle(b, p1=a)) |
|
return a, b, c |
|
|
|
|
|
def sketch_incenter2(args: tuple[gm.Point, ...]) -> tuple[Point, ...]: |
|
a, b, c = args |
|
l1 = sketch_bisect([b, a, c]) |
|
l2 = sketch_bisect([a, b, c]) |
|
i = line_line_intersection(l1, l2) |
|
x = i.foot(Line(b, c)) |
|
y = i.foot(Line(c, a)) |
|
z = i.foot(Line(a, b)) |
|
return x, y, z, i |
|
|
|
|
|
def sketch_excenter2(args: tuple[gm.Point, ...]) -> tuple[Point, ...]: |
|
a, b, c = args |
|
l1 = sketch_bisect([b, a, c]) |
|
l2 = sketch_exbisect([a, b, c]) |
|
i = line_line_intersection(l1, l2) |
|
x = i.foot(Line(b, c)) |
|
y = i.foot(Line(c, a)) |
|
z = i.foot(Line(a, b)) |
|
return x, y, z, i |
|
|
|
|
|
def sketch_centroid(args: tuple[gm.Point, ...]) -> tuple[Point, ...]: |
|
a, b, c = args |
|
x = (b + c) * 0.5 |
|
y = (c + a) * 0.5 |
|
z = (a + b) * 0.5 |
|
i = line_line_intersection(Line(a, x), Line(b, y)) |
|
return x, y, z, i |
|
|
|
|
|
def sketch_ninepoints(args: tuple[gm.Point, ...]) -> tuple[Point, ...]: |
|
a, b, c = args |
|
x = (b + c) * 0.5 |
|
y = (c + a) * 0.5 |
|
z = (a + b) * 0.5 |
|
c = Circle(p1=x, p2=y, p3=z) |
|
return x, y, z, c.center |
|
|
|
|
|
def sketch_2l1c(args: tuple[gm.Point, ...]) -> tuple[Point, ...]: |
|
"""Sketch a circle touching two lines and another circle.""" |
|
a, b, c, p = args |
|
bc, ac = Line(b, c), Line(a, c) |
|
circle = Circle(p, p1=a) |
|
|
|
d, d_ = line_circle_intersection(p.perpendicular_line(bc), circle) |
|
if bc.diff_side(d_, a): |
|
d = d_ |
|
|
|
e, e_ = line_circle_intersection(p.perpendicular_line(ac), circle) |
|
if ac.diff_side(e_, b): |
|
e = e_ |
|
|
|
df = d.perpendicular_line(Line(p, d)) |
|
ef = e.perpendicular_line(Line(p, e)) |
|
f = line_line_intersection(df, ef) |
|
|
|
g, g_ = line_circle_intersection(Line(c, f), circle) |
|
if bc.same_side(g_, a): |
|
g = g_ |
|
|
|
b_ = c + (b - c) / b.distance(c) |
|
a_ = c + (a - c) / a.distance(c) |
|
m = (a_ + b_) * 0.5 |
|
x = line_line_intersection(Line(c, m), Line(p, g)) |
|
return x.foot(ac), x.foot(bc), g, x |
|
|
|
|
|
def sketch_3peq(args: tuple[gm.Point, ...]) -> tuple[Point, ...]: |
|
a, b, c = args |
|
ab, bc, ca = Line(a, b), Line(b, c), Line(c, a) |
|
|
|
z = b + (c - b) * np.random.uniform(-0.5, 1.5) |
|
|
|
z_ = z * 2 - c |
|
l = z_.parallel_line(ca) |
|
x = line_line_intersection(l, ab) |
|
y = z * 2 - x |
|
return x, y, z |
|
|
|
|
|
def try_to_sketch_intersect( |
|
name1: str, |
|
args1: list[Union[gm.Point, Point]], |
|
name2: str, |
|
args2: list[Union[gm.Point, Point]], |
|
existing_points: list[Point], |
|
) -> Optional[Point]: |
|
"""Try to sketch an intersection between two objects.""" |
|
obj1 = sketch(name1, args1)[0] |
|
obj2 = sketch(name2, args2)[0] |
|
|
|
if isinstance(obj1, Line) and isinstance(obj2, Line): |
|
fn = line_line_intersection |
|
elif isinstance(obj1, Circle) and isinstance(obj2, Circle): |
|
fn = circle_circle_intersection |
|
else: |
|
fn = line_circle_intersection |
|
if isinstance(obj2, Line) and isinstance(obj1, Circle): |
|
obj1, obj2 = obj2, obj1 |
|
|
|
try: |
|
x = fn(obj1, obj2) |
|
except: |
|
return None |
|
|
|
if isinstance(x, Point): |
|
return x |
|
|
|
x1, x2 = x |
|
|
|
close1 = check_too_close([x1], existing_points) |
|
far1 = check_too_far([x1], existing_points) |
|
if not close1 and not far1: |
|
return x1 |
|
close2 = check_too_close([x2], existing_points) |
|
far2 = check_too_far([x2], existing_points) |
|
if not close2 and not far2: |
|
return x2 |
|
|
|
return None |
|
|
|
|
|
def sketch_acircle(args: tuple[gm.Point, ...]) -> Circle: |
|
a, b, c, d, f = args |
|
de = sketch_aline([c, a, b, f, d]) |
|
fe = sketch_aline([a, c, b, d, f]) |
|
e = line_line_intersection(de, fe) |
|
return Circle(p1=d, p2=e, p3=f) |
|
|
|
|
|
def sketch_aline(args: tuple[gm.Point, ...]) -> HalfLine: |
|
"""Sketch the construction aline.""" |
|
A, B, C, D, E = args |
|
ab = A - B |
|
cb = C - B |
|
de = D - E |
|
|
|
dab = A.distance(B) |
|
ang_ab = np.arctan2(ab.y / dab, ab.x / dab) |
|
|
|
dcb = C.distance(B) |
|
ang_bc = np.arctan2(cb.y / dcb, cb.x / dcb) |
|
|
|
dde = D.distance(E) |
|
ang_de = np.arctan2(de.y / dde, de.x / dde) |
|
|
|
ang_ex = ang_de + ang_bc - ang_ab |
|
X = E + Point(np.cos(ang_ex), np.sin(ang_ex)) |
|
return HalfLine(E, X) |
|
|
|
|
|
def sketch_amirror(args: tuple[gm.Point, ...]) -> HalfLine: |
|
"""Sketch the angle mirror.""" |
|
A, B, C = args |
|
ab = A - B |
|
cb = C - B |
|
|
|
dab = A.distance(B) |
|
ang_ab = np.arctan2(ab.y / dab, ab.x / dab) |
|
dcb = C.distance(B) |
|
ang_bc = np.arctan2(cb.y / dcb, cb.x / dcb) |
|
|
|
ang_bx = 2 * ang_bc - ang_ab |
|
X = B + Point(np.cos(ang_bx), np.sin(ang_bx)) |
|
return HalfLine(B, X) |
|
|
|
|
|
def sketch_bisect(args: tuple[gm.Point, ...]) -> Line: |
|
a, b, c = args |
|
ab = a.distance(b) |
|
bc = b.distance(c) |
|
x = b + (c - b) * (ab / bc) |
|
m = (a + x) * 0.5 |
|
return Line(b, m) |
|
|
|
|
|
def sketch_exbisect(args: tuple[gm.Point, ...]) -> Line: |
|
a, b, c = args |
|
return sketch_bisect(args).perpendicular_line(b) |
|
|
|
|
|
def sketch_bline(args: tuple[gm.Point, ...]) -> Line: |
|
a, b = args |
|
m = (a + b) * 0.5 |
|
return m.perpendicular_line(Line(a, b)) |
|
|
|
|
|
def sketch_dia(args: tuple[gm.Point, ...]) -> Circle: |
|
a, b = args |
|
return Circle((a + b) * 0.5, p1=a) |
|
|
|
|
|
def sketch_tangent(args: tuple[gm.Point, ...]) -> tuple[Point, Point]: |
|
a, o, b = args |
|
dia = sketch_dia([a, o]) |
|
return circle_circle_intersection(Circle(o, p1=b), dia) |
|
|
|
|
|
def sketch_circle(args: tuple[gm.Point, ...]) -> Circle: |
|
a, b, c = args |
|
return Circle(center=a, radius=b.distance(c)) |
|
|
|
|
|
def sketch_cc_tangent(args: tuple[gm.Point, ...]) -> tuple[Point, ...]: |
|
"""Sketch tangents to two circles.""" |
|
o, a, w, b = args |
|
ra, rb = o.distance(a), w.distance(b) |
|
|
|
ow = Line(o, w) |
|
if close_enough(ra, rb): |
|
oo = ow.perpendicular_line(o) |
|
oa = Circle(o, ra) |
|
x, z = line_circle_intersection(oo, oa) |
|
y = x + w - o |
|
t = z + w - o |
|
return x, y, z, t |
|
|
|
swap = rb > ra |
|
if swap: |
|
o, a, w, b = w, b, o, a |
|
ra, rb = rb, ra |
|
|
|
oa = Circle(o, ra) |
|
q = o + (w - o) * ra / (ra - rb) |
|
|
|
x, z = circle_circle_intersection(sketch_dia([o, q]), oa) |
|
y = w.foot(Line(x, q)) |
|
t = w.foot(Line(z, q)) |
|
|
|
if swap: |
|
x, y, z, t = y, x, t, z |
|
|
|
return x, y, z, t |
|
|
|
|
|
def sketch_hcircle(args: tuple[gm.Point, ...]) -> HoleCircle: |
|
a, b = args |
|
return HoleCircle(center=a, radius=a.distance(b), hole=b) |
|
|
|
|
|
def sketch_e5128(args: tuple[gm.Point, ...]) -> tuple[Point, Point]: |
|
a, b, c, d = args |
|
ad = Line(a, d) |
|
|
|
g = (a + b) * 0.5 |
|
de = Line(d, g) |
|
|
|
e, f = line_circle_intersection(de, Circle(c, p1=b)) |
|
|
|
if e.distance(d) < f.distance(d): |
|
e = f |
|
return e, g |
|
|
|
|
|
def sketch_eq_quadrangle(args: tuple[gm.Point, ...]) -> tuple[Point, ...]: |
|
"""Sketch quadrangle with two equal opposite sides.""" |
|
a = Point(0.0, 0.0) |
|
b = Point(1.0, 0.0) |
|
|
|
length = np.random.uniform(0.5, 2.0) |
|
ang = np.random.uniform(np.pi / 3, np.pi * 2 / 3) |
|
d = head_from(a, ang, length) |
|
|
|
ang = ang_of(b, d) |
|
ang = np.random.uniform(ang / 10, ang / 9) |
|
c = head_from(b, ang, length) |
|
a, b, c, d = random_rfss(a, b, c, d) |
|
return a, b, c, d |
|
|
|
|
|
def sketch_eq_trapezoid(args: tuple[gm.Point, ...]) -> tuple[Point, ...]: |
|
a = Point(0.0, 0.0) |
|
b = Point(1.0, 0.0) |
|
l = unif(0.5, 2.0) |
|
|
|
height = unif(0.5, 2.0) |
|
c = Point(0.5 + l / 2.0, height) |
|
d = Point(0.5 - l / 2.0, height) |
|
|
|
a, b, c, d = random_rfss(a, b, c, d) |
|
return a, b, c, d |
|
|
|
|
|
def sketch_eqangle2(args: tuple[gm.Point, ...]) -> Point: |
|
"""Sketch the def eqangle2.""" |
|
a, b, c = args |
|
|
|
d = c * 2 - b |
|
|
|
ba = b.distance(a) |
|
bc = b.distance(c) |
|
l = ba * ba / bc |
|
|
|
if unif(0.0, 1.0) < 0.5: |
|
be = min(l, bc) |
|
be = unif(be * 0.1, be * 0.9) |
|
else: |
|
be = max(l, bc) |
|
be = unif(be * 1.1, be * 1.5) |
|
|
|
e = b + (c - b) * (be / bc) |
|
y = b + (a - b) * (be / l) |
|
return line_line_intersection(Line(c, y), Line(a, e)) |
|
|
|
|
|
def sketch_eqangle3(args: tuple[gm.Point, ...]) -> Circle: |
|
a, b, d, e, f = args |
|
de = d.distance(e) |
|
ef = e.distance(f) |
|
ab = b.distance(a) |
|
ang_ax = ang_of(a, b) + ang_between(e, d, f) |
|
x = head_from(a, ang_ax, length=de / ef * ab) |
|
return Circle(p1=a, p2=b, p3=x) |
|
|
|
|
|
def sketch_eqdia_quadrangle(args: tuple[gm.Point, ...]) -> tuple[Point, ...]: |
|
"""Sketch quadrangle with two equal diagonals.""" |
|
m = unif(0.3, 0.7) |
|
n = unif(0.3, 0.7) |
|
a = Point(-m, 0.0) |
|
c = Point(1 - m, 0.0) |
|
b = Point(0.0, -n) |
|
d = Point(0.0, 1 - n) |
|
|
|
ang = unif(-0.25 * np.pi, 0.25 * np.pi) |
|
sin, cos = np.sin(ang), np.cos(ang) |
|
b = b.rotate(sin, cos) |
|
d = d.rotate(sin, cos) |
|
a, b, c, d = random_rfss(a, b, c, d) |
|
return a, b, c, d |
|
|
|
|
|
def sketch_free(args: tuple[gm.Point, ...]) -> Point: |
|
return random_points(1)[0] |
|
|
|
|
|
def sketch_isos(args: tuple[gm.Point, ...]) -> tuple[Point, ...]: |
|
base = unif(0.5, 1.5) |
|
height = unif(0.5, 1.5) |
|
|
|
b = Point(-base / 2, 0.0) |
|
c = Point(base / 2, 0.0) |
|
a = Point(0.0, height) |
|
a, b, c = random_rfss(a, b, c) |
|
return a, b, c |
|
|
|
|
|
def sketch_line(args: tuple[gm.Point, ...]) -> Line: |
|
a, b = args |
|
return Line(a, b) |
|
|
|
|
|
def sketch_cyclic(args: tuple[gm.Point, ...]) -> Circle: |
|
a, b, c = args |
|
return Circle(p1=a, p2=b, p3=c) |
|
|
|
|
|
def sketch_hline(args: tuple[gm.Point, ...]) -> HalfLine: |
|
a, b = args |
|
return HalfLine(a, b) |
|
|
|
|
|
def sketch_midp(args: tuple[gm.Point, ...]) -> Point: |
|
a, b = args |
|
return (a + b) * 0.5 |
|
|
|
|
|
def sketch_pentagon(args: tuple[gm.Point, ...]) -> tuple[Point, ...]: |
|
points = [Point(1.0, 0.0)] |
|
ang = 0.0 |
|
|
|
for i in range(4): |
|
ang += (2 * np.pi - ang) / (5 - i) * unif(0.5, 1.5) |
|
point = Point(np.cos(ang), np.sin(ang)) |
|
points.append(point) |
|
|
|
a, b, c, d, e = points |
|
a, b, c, d, e = random_rfss(a, b, c, d, e) |
|
return a, b, c, d, e |
|
|
|
|
|
def sketch_pline(args: tuple[gm.Point, ...]) -> Line: |
|
a, b, c = args |
|
return a.parallel_line(Line(b, c)) |
|
|
|
|
|
def sketch_pmirror(args: tuple[gm.Point, ...]) -> Point: |
|
a, b = args |
|
return b * 2 - a |
|
|
|
|
|
def sketch_quadrangle(args: tuple[gm.Point, ...]) -> tuple[Point, ...]: |
|
"""Sketch a random quadrangle.""" |
|
m = unif(0.3, 0.7) |
|
n = unif(0.3, 0.7) |
|
|
|
a = Point(-m, 0.0) |
|
c = Point(1 - m, 0.0) |
|
b = Point(0.0, -unif(0.25, 0.75)) |
|
d = Point(0.0, unif(0.25, 0.75)) |
|
|
|
ang = unif(-0.25 * np.pi, 0.25 * np.pi) |
|
sin, cos = np.sin(ang), np.cos(ang) |
|
b = b.rotate(sin, cos) |
|
d = d.rotate(sin, cos) |
|
a, b, c, d = random_rfss(a, b, c, d) |
|
return a, b, c, d |
|
|
|
|
|
def sketch_r_trapezoid(args: tuple[gm.Point, ...]) -> tuple[Point, ...]: |
|
a = Point(0.0, 1.0) |
|
d = Point(0.0, 0.0) |
|
b = Point(unif(0.5, 1.5), 1.0) |
|
c = Point(unif(0.5, 1.5), 0.0) |
|
a, b, c, d = random_rfss(a, b, c, d) |
|
return a, b, c, d |
|
|
|
|
|
def sketch_r_triangle(args: tuple[gm.Point, ...]) -> tuple[Point, ...]: |
|
a = Point(0.0, 0.0) |
|
b = Point(0.0, unif(0.5, 2.0)) |
|
c = Point(unif(0.5, 2.0), 0.0) |
|
a, b, c = random_rfss(a, b, c) |
|
return a, b, c |
|
|
|
|
|
def sketch_rectangle(args: tuple[gm.Point, ...]) -> tuple[Point, ...]: |
|
a = Point(0.0, 0.0) |
|
b = Point(0.0, 1.0) |
|
l = unif(0.5, 2.0) |
|
c = Point(l, 1.0) |
|
d = Point(l, 0.0) |
|
a, b, c, d = random_rfss(a, b, c, d) |
|
return a, b, c, d |
|
|
|
|
|
def sketch_reflect(args: tuple[gm.Point, ...]) -> Point: |
|
a, b, c = args |
|
m = a.foot(Line(b, c)) |
|
return m * 2 - a |
|
|
|
|
|
def sketch_risos(args: tuple[gm.Point, ...]) -> tuple[Point, ...]: |
|
a = Point(0.0, 0.0) |
|
b = Point(0.0, 1.0) |
|
c = Point(1.0, 0.0) |
|
a, b, c = random_rfss(a, b, c) |
|
return a, b, c |
|
|
|
|
|
def sketch_rotaten90(args: tuple[gm.Point, ...]) -> Point: |
|
a, b = args |
|
ang = -np.pi / 2 |
|
return a + (b - a).rotate(np.sin(ang), np.cos(ang)) |
|
|
|
|
|
def sketch_rotatep90(args: tuple[gm.Point, ...]) -> Point: |
|
a, b = args |
|
ang = np.pi / 2 |
|
return a + (b - a).rotate(np.sin(ang), np.cos(ang)) |
|
|
|
|
|
def sketch_s_angle(args: tuple[gm.Point, ...]) -> HalfLine: |
|
a, b, y = args |
|
ang = y / 180 * np.pi |
|
x = b + (a - b).rotatea(ang) |
|
return HalfLine(b, x) |
|
|
|
|
|
def sketch_segment(args: tuple[gm.Point, ...]) -> tuple[Point, Point]: |
|
a, b = random_points(2) |
|
return a, b |
|
|
|
|
|
def sketch_shift(args: tuple[gm.Point, ...]) -> Point: |
|
a, b, c = args |
|
return c + (b - a) |
|
|
|
|
|
def sketch_square(args: tuple[gm.Point, ...]) -> tuple[Point, Point]: |
|
a, b = args |
|
c = b + (a - b).rotatea(-np.pi / 2) |
|
d = a + (b - a).rotatea(np.pi / 2) |
|
return c, d |
|
|
|
|
|
def sketch_isquare(args: tuple[gm.Point, ...]) -> tuple[Point, ...]: |
|
a = Point(0.0, 0.0) |
|
b = Point(1.0, 0.0) |
|
c = Point(1.0, 1.0) |
|
d = Point(0.0, 1.0) |
|
a, b, c, d = random_rfss(a, b, c, d) |
|
return a, b, c, d |
|
|
|
|
|
def sketch_tline(args: tuple[gm.Point, ...]) -> Line: |
|
a, b, c = args |
|
return a.perpendicular_line(Line(b, c)) |
|
|
|
|
|
def sketch_trapezoid(args: tuple[gm.Point, ...]) -> tuple[Point, ...]: |
|
d = Point(0.0, 0.0) |
|
c = Point(1.0, 0.0) |
|
|
|
base = unif(0.5, 2.0) |
|
height = unif(0.5, 2.0) |
|
a = Point(unif(0.2, 0.5), height) |
|
b = Point(a.x + base, height) |
|
a, b, c, d = random_rfss(a, b, c, d) |
|
return a, b, c, d |
|
|
|
|
|
def sketch_triangle(args: tuple[gm.Point, ...]) -> tuple[Point, ...]: |
|
a = Point(0.0, 0.0) |
|
b = Point(1.0, 0.0) |
|
ac = unif(0.5, 2.0) |
|
ang = unif(0.2, 0.8) * np.pi |
|
c = head_from(a, ang, ac) |
|
return a, b, c |
|
|
|
|
|
def sketch_triangle12(args: tuple[gm.Point, ...]) -> tuple[Point, ...]: |
|
b = Point(0.0, 0.0) |
|
c = Point(unif(1.5, 2.5), 0.0) |
|
a, _ = circle_circle_intersection(Circle(b, 1.0), Circle(c, 2.0)) |
|
a, b, c = random_rfss(a, b, c) |
|
return a, b, c |
|
|
|
|
|
def sketch_trisect(args: tuple[gm.Point, ...]) -> tuple[Point, Point]: |
|
"""Sketch two trisectors of an angle.""" |
|
a, b, c = args |
|
ang1 = ang_of(b, a) |
|
ang2 = ang_of(b, c) |
|
|
|
swap = 0 |
|
if ang1 > ang2: |
|
ang1, ang2 = ang2, ang1 |
|
swap += 1 |
|
|
|
if ang2 - ang1 > np.pi: |
|
ang1, ang2 = ang2, ang1 + 2 * np.pi |
|
swap += 1 |
|
|
|
angx = ang1 + (ang2 - ang1) / 3 |
|
angy = ang2 - (ang2 - ang1) / 3 |
|
|
|
x = b + Point(np.cos(angx), np.sin(angx)) |
|
y = b + Point(np.cos(angy), np.sin(angy)) |
|
|
|
ac = Line(a, c) |
|
x = line_line_intersection(Line(b, x), ac) |
|
y = line_line_intersection(Line(b, y), ac) |
|
|
|
if swap == 1: |
|
return y, x |
|
return x, y |
|
|
|
|
|
def sketch_trisegment(args: tuple[gm.Point, ...]) -> tuple[Point, Point]: |
|
a, b = args |
|
x, y = a + (b - a) * (1.0 / 3), a + (b - a) * (2.0 / 3) |
|
return x, y |
|
|