Geometry / data /numericals.py
introvoyz041's picture
Migrated from GitHub
f4224d0 verified
# Copyright 2023 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Numerical representation of geometry."""
from __future__ import annotations
import math
from typing import Any, Optional, Union
import geometry as gm
import matplotlib
from matplotlib import pyplot as plt
import matplotlib.colors as mcolors
import numpy as np
from numpy.random import uniform as unif # pylint: disable=g-importing-member
matplotlib.use('TkAgg')
ATOM = 1e-12
# Some variables are there for better code reading.
# pylint: disable=unused-assignment
# pylint: disable=unused-argument
# pylint: disable=unused-variable
# Naming in geometry is a little different
# we stick to geometry naming to better read the code.
# pylint: disable=invalid-name
class Point:
"""Numerical point."""
def __init__(self, x, y):
self.x = x
self.y = y
def __lt__(self, other: Point) -> bool:
return (self.x, self.y) < (other.x, other.y)
def __gt__(self, other: Point) -> bool:
return (self.x, self.y) > (other.x, other.y)
def __add__(self, p: Point) -> Point:
return Point(self.x + p.x, self.y + p.y)
def __sub__(self, p: Point) -> Point:
return Point(self.x - p.x, self.y - p.y)
def __mul__(self, f: float) -> Point:
return Point(self.x * f, self.y * f)
def __rmul__(self, f: float) -> Point:
return self * f
def __truediv__(self, f: float) -> Point:
return Point(self.x / f, self.y / f)
def __floordiv__(self, f: float) -> Point:
div = self / f # true div
return Point(int(div.x), int(div.y))
def __str__(self) -> str:
return 'P({},{})'.format(self.x, self.y)
def close(self, point: Point, tol: float = 1e-12) -> bool:
return abs(self.x - point.x) < tol and abs(self.y - point.y) < tol
def midpoint(self, p: Point) -> Point:
return Point(0.5 * (self.x + p.x), 0.5 * (self.y + p.y))
def distance(self, p: Union[Point, Line, Circle]) -> float:
if isinstance(p, Line):
return p.distance(self)
if isinstance(p, Circle):
return abs(p.radius - self.distance(p.center))
dx = self.x - p.x
dy = self.y - p.y
return np.sqrt(dx * dx + dy * dy)
def distance2(self, p: Point) -> float:
if isinstance(p, Line):
return p.distance(self)
dx = self.x - p.x
dy = self.y - p.y
return dx * dx + dy * dy
def rotatea(self, ang: float) -> Point:
sinb, cosb = np.sin(ang), np.cos(ang)
return self.rotate(sinb, cosb)
def rotate(self, sinb: float, cosb: float) -> Point:
x, y = self.x, self.y
return Point(x * cosb - y * sinb, x * sinb + y * cosb)
def flip(self) -> Point:
return Point(-self.x, self.y)
def perpendicular_line(self, line: Line) -> Line:
return line.perpendicular_line(self)
def foot(self, line: Line) -> Point:
if isinstance(line, Line):
l = line.perpendicular_line(self)
return line_line_intersection(l, line)
elif isinstance(line, Circle):
c, r = line.center, line.radius
return c + (self - c) * r / self.distance(c)
raise ValueError('Dropping foot to weird type {}'.format(type(line)))
def parallel_line(self, line: Line) -> Line:
return line.parallel_line(self)
def norm(self) -> float:
return np.sqrt(self.x**2 + self.y**2)
def cos(self, other: Point) -> float:
x, y = self.x, self.y
a, b = other.x, other.y
return (x * a + y * b) / self.norm() / other.norm()
def dot(self, other: Point) -> float:
return self.x * other.x + self.y * other.y
def sign(self, line: Line) -> int:
return line.sign(self)
def is_same(self, other: Point) -> bool:
return self.distance(other) <= ATOM
class Line:
"""Numerical line."""
def __init__(
self,
p1: Point = None,
p2: Point = None,
coefficients: tuple[int, int, int] = None,
):
if p1 is None and p2 is None and coefficients is None:
self.coefficients = None, None, None
return
a, b, c = coefficients or (
p1.y - p2.y,
p2.x - p1.x,
p1.x * p2.y - p2.x * p1.y,
)
# Make sure a is always positive (or always negative for that matter)
# With a == 0, Assuming a = +epsilon > 0
# Then b such that ax + by = 0 with y>0 should be negative.
if a < 0.0 or a == 0.0 and b > 0.0:
a, b, c = -a, -b, -c
self.coefficients = a, b, c
def parallel_line(self, p: Point) -> Line:
a, b, _ = self.coefficients
return Line(coefficients=(a, b, -a * p.x - b * p.y)) # pylint: disable=invalid-unary-operand-type
def perpendicular_line(self, p: Point) -> Line:
a, b, _ = self.coefficients
return Line(p, p + Point(a, b))
def greater_than(self, other: Line) -> bool:
a, b, _ = self.coefficients
x, y, _ = other.coefficients
# b/a > y/x
return b * x > a * y
def __gt__(self, other: Line) -> bool:
return self.greater_than(other)
def __lt__(self, other: Line) -> bool:
return other.greater_than(self)
def same(self, other: Line) -> bool:
a, b, c = self.coefficients
x, y, z = other.coefficients
return close_enough(a * y, b * x) and close_enough(b * z, c * y)
def equal(self, other: Line) -> bool:
a, b, _ = self.coefficients
x, y, _ = other.coefficients
# b/a == y/x
return b * x == a * y
def less_than(self, other: Line) -> bool:
a, b, _ = self.coefficients
x, y, _ = other.coefficients
# b/a > y/x
return b * x < a * y
def intersect(self, obj: Union[Line, Circle]) -> tuple[Point, ...]:
if isinstance(obj, Line):
return line_line_intersection(self, obj)
if isinstance(obj, Circle):
return line_circle_intersection(self, obj)
def distance(self, p: Point) -> float:
a, b, c = self.coefficients
return abs(self(p.x, p.y)) / math.sqrt(a * a + b * b)
def __call__(self, x: Point, y: Point = None) -> float:
if isinstance(x, Point) and y is None:
return self(x.x, x.y)
a, b, c = self.coefficients
return x * a + y * b + c
def is_parallel(self, other: Line) -> bool:
a, b, _ = self.coefficients
x, y, _ = other.coefficients
return abs(a * y - b * x) < ATOM
def is_perp(self, other: Line) -> bool:
a, b, _ = self.coefficients
x, y, _ = other.coefficients
return abs(a * x + b * y) < ATOM
def cross(self, other: Line) -> float:
a, b, _ = self.coefficients
x, y, _ = other.coefficients
return a * y - b * x
def dot(self, other: Line) -> float:
a, b, _ = self.coefficients
x, y, _ = other.coefficients
return a * x + b * y
def point_at(self, x: float = None, y: float = None) -> Optional[Point]:
"""Get a point on line closest to (x, y)."""
a, b, c = self.coefficients
# ax + by + c = 0
if x is None and y is not None:
if a != 0:
return Point((-c - b * y) / a, y) # pylint: disable=invalid-unary-operand-type
else:
return None
elif x is not None and y is None:
if b != 0:
return Point(x, (-c - a * x) / b) # pylint: disable=invalid-unary-operand-type
else:
return None
elif x is not None and y is not None:
if a * x + b * y + c == 0.0:
return Point(x, y)
return None
def diff_side(self, p1: Point, p2: Point) -> Optional[bool]:
d1 = self(p1.x, p1.y)
d2 = self(p2.x, p2.y)
if d1 == 0 or d2 == 0:
return None
return d1 * d2 < 0
def same_side(self, p1: Point, p2: Point) -> Optional[bool]:
d1 = self(p1.x, p1.y)
d2 = self(p2.x, p2.y)
if d1 == 0 or d2 == 0:
return None
return d1 * d2 > 0
def sign(self, point: Point) -> int:
s = self(point.x, point.y)
if s > 0:
return 1
elif s < 0:
return -1
return 0
def is_same(self, other: Line) -> bool:
a, b, c = self.coefficients
x, y, z = other.coefficients
return abs(a * y - b * x) <= ATOM and abs(b * z - c * y) <= ATOM
def sample_within(self, points: list[Point], n: int = 5) -> list[Point]:
"""Sample a point within the boundary of points."""
center = sum(points, Point(0.0, 0.0)) * (1.0 / len(points))
radius = max([p.distance(center) for p in points])
if close_enough(center.distance(self), radius):
center = center.foot(self)
a, b = line_circle_intersection(self, Circle(center.foot(self), radius))
result = None
best = -1.0
for _ in range(n):
rand = unif(0.0, 1.0)
x = a + (b - a) * rand
mind = min([x.distance(p) for p in points])
if mind > best:
best = mind
result = x
return [result]
class InvalidLineIntersectError(Exception):
pass
class HalfLine(Line):
"""Numerical ray."""
def __init__(self, tail: Point, head: Point): # pylint: disable=super-init-not-called
self.line = Line(tail, head)
self.coefficients = self.line.coefficients
self.tail = tail
self.head = head
def intersect(self, obj: Union[Line, HalfLine, Circle, HoleCircle]) -> Point:
if isinstance(obj, (HalfLine, Line)):
return line_line_intersection(self.line, obj)
exclude = [self.tail]
if isinstance(obj, HoleCircle):
exclude += [obj.hole]
a, b = line_circle_intersection(self.line, obj)
if any([a.close(x) for x in exclude]):
return b
if any([b.close(x) for x in exclude]):
return a
v = self.head - self.tail
va = a - self.tail
vb = b - self.tail
if v.dot(va) > 0:
return a
if v.dot(vb) > 0:
return b
raise InvalidLineIntersectError()
def sample_within(self, points: list[Point], n: int = 5) -> list[Point]:
center = sum(points, Point(0.0, 0.0)) * (1.0 / len(points))
radius = max([p.distance(center) for p in points])
if close_enough(center.distance(self.line), radius):
center = center.foot(self)
a, b = line_circle_intersection(self, Circle(center.foot(self), radius))
if (a - self.tail).dot(self.head - self.tail) > 0:
a, b = self.tail, a
else:
a, b = self.tail, b # pylint: disable=self-assigning-variable
result = None
best = -1.0
for _ in range(n):
x = a + (b - a) * unif(0.0, 1.0)
mind = min([x.distance(p) for p in points])
if mind > best:
best = mind
result = x
return [result]
def _perpendicular_bisector(p1: Point, p2: Point) -> Line:
midpoint = (p1 + p2) * 0.5
return Line(midpoint, midpoint + Point(p2.y - p1.y, p1.x - p2.x))
def same_sign(
a: Point, b: Point, c: Point, d: Point, e: Point, f: Point
) -> bool:
a, b, c, d, e, f = map(lambda p: p.sym, [a, b, c, d, e, f])
ab, cb = a - b, c - b
de, fe = d - e, f - e
return (ab.x * cb.y - ab.y * cb.x) * (de.x * fe.y - de.y * fe.x) > 0
class Circle:
"""Numerical circle."""
def __init__(
self,
center: Optional[Point] = None,
radius: Optional[float] = None,
p1: Optional[Point] = None,
p2: Optional[Point] = None,
p3: Optional[Point] = None,
):
if not center:
if not (p1 and p2 and p3):
self.center = self.radius = self.r2 = None
return
# raise ValueError('Circle without center need p1 p2 p3')
l12 = _perpendicular_bisector(p1, p2)
l23 = _perpendicular_bisector(p2, p3)
center = line_line_intersection(l12, l23)
self.center = center
self.a, self.b = center.x, center.y
if not radius:
if not (p1 or p2 or p3):
raise ValueError('Circle needs radius or p1 or p2 or p3')
p = p1 or p2 or p3
self.r2 = (self.a - p.x) ** 2 + (self.b - p.y) ** 2
self.radius = math.sqrt(self.r2)
else:
self.radius = radius
self.r2 = radius * radius
def intersect(self, obj: Union[Line, Circle]) -> tuple[Point, ...]:
if isinstance(obj, Line):
return obj.intersect(self)
if isinstance(obj, Circle):
return circle_circle_intersection(self, obj)
def sample_within(self, points: list[Point], n: int = 5) -> list[Point]:
"""Sample a point within the boundary of points."""
result = None
best = -1.0
for _ in range(n):
ang = unif(0.0, 2.0) * np.pi
x = self.center + Point(np.cos(ang), np.sin(ang)) * self.radius
mind = min([x.distance(p) for p in points])
if mind > best:
best = mind
result = x
return [result]
class HoleCircle(Circle):
"""Numerical circle with a missing point."""
def __init__(self, center: Point, radius: float, hole: Point):
super().__init__(center, radius)
self.hole = hole
def intersect(self, obj: Union[Line, HalfLine, Circle, HoleCircle]) -> Point:
if isinstance(obj, Line):
a, b = line_circle_intersection(obj, self)
if a.close(self.hole):
return b
return a
if isinstance(obj, HalfLine):
return obj.intersect(self)
if isinstance(obj, Circle):
a, b = circle_circle_intersection(obj, self)
if a.close(self.hole):
return b
return a
if isinstance(obj, HoleCircle):
a, b = circle_circle_intersection(obj, self)
if a.close(self.hole) or a.close(obj.hole):
return b
return a
def solve_quad(a: float, b: float, c: float) -> tuple[float, float]:
"""Solve a x^2 + bx + c = 0."""
a = 2 * a
d = b * b - 2 * a * c
if d < 0:
return None # the caller should expect this result.
y = math.sqrt(d)
return (-b - y) / a, (-b + y) / a
def circle_circle_intersection(c1: Circle, c2: Circle) -> tuple[Point, Point]:
"""Returns a pair of Points as intersections of c1 and c2."""
# circle 1: (x0, y0), radius r0
# circle 2: (x1, y1), radius r1
x0, y0, r0 = c1.a, c1.b, c1.radius
x1, y1, r1 = c2.a, c2.b, c2.radius
d = math.sqrt((x1 - x0) ** 2 + (y1 - y0) ** 2)
if d == 0:
raise InvalidQuadSolveError()
a = (r0**2 - r1**2 + d**2) / (2 * d)
h = r0**2 - a**2
if h < 0:
raise InvalidQuadSolveError()
h = np.sqrt(h)
x2 = x0 + a * (x1 - x0) / d
y2 = y0 + a * (y1 - y0) / d
x3 = x2 + h * (y1 - y0) / d
y3 = y2 - h * (x1 - x0) / d
x4 = x2 - h * (y1 - y0) / d
y4 = y2 + h * (x1 - x0) / d
return Point(x3, y3), Point(x4, y4)
class InvalidQuadSolveError(Exception):
pass
def line_circle_intersection(line: Line, circle: Circle) -> tuple[Point, Point]:
"""Returns a pair of points as intersections of line and circle."""
a, b, c = line.coefficients
r = float(circle.radius)
center = circle.center
p, q = center.x, center.y
if b == 0:
x = -c / a
x_p = x - p
x_p2 = x_p * x_p
y = solve_quad(1, -2 * q, q * q + x_p2 - r * r)
if y is None:
raise InvalidQuadSolveError()
y1, y2 = y
return (Point(x, y1), Point(x, y2))
if a == 0:
y = -c / b
y_q = y - q
y_q2 = y_q * y_q
x = solve_quad(1, -2 * p, p * p + y_q2 - r * r)
if x is None:
raise InvalidQuadSolveError()
x1, x2 = x
return (Point(x1, y), Point(x2, y))
c_ap = c + a * p
a2 = a * a
y = solve_quad(
a2 + b * b, 2 * (b * c_ap - a2 * q), c_ap * c_ap + a2 * (q * q - r * r)
)
if y is None:
raise InvalidQuadSolveError()
y1, y2 = y
return Point(-(b * y1 + c) / a, y1), Point(-(b * y2 + c) / a, y2)
def _check_between(a: Point, b: Point, c: Point) -> bool:
"""Whether a is between b & c."""
return (a - b).dot(c - b) > 0 and (a - c).dot(b - c) > 0
def circle_segment_intersect(
circle: Circle, p1: Point, p2: Point
) -> list[Point]:
l = Line(p1, p2)
px, py = line_circle_intersection(l, circle)
result = []
if _check_between(px, p1, p2):
result.append(px)
if _check_between(py, p1, p2):
result.append(py)
return result
def line_segment_intersection(l: Line, A: Point, B: Point) -> Point: # pylint: disable=invalid-name
a, b, c = l.coefficients
x1, y1, x2, y2 = A.x, A.y, B.x, B.y
dx, dy = x2 - x1, y2 - y1
alpha = (-c - a * x1 - b * y1) / (a * dx + b * dy)
return Point(x1 + alpha * dx, y1 + alpha * dy)
def line_line_intersection(l1: Line, l2: Line) -> Point:
a1, b1, c1 = l1.coefficients
a2, b2, c2 = l2.coefficients
# a1x + b1y + c1 = 0
# a2x + b2y + c2 = 0
d = a1 * b2 - a2 * b1
if d == 0:
raise InvalidLineIntersectError
return Point((c2 * b1 - c1 * b2) / d, (c1 * a2 - c2 * a1) / d)
def check_too_close(
newpoints: list[Point], points: list[Point], tol: int = 0.1
) -> bool:
if not points:
return False
avg = sum(points, Point(0.0, 0.0)) * 1.0 / len(points)
mindist = min([p.distance(avg) for p in points])
for p0 in newpoints:
for p1 in points:
if p0.distance(p1) < tol * mindist:
return True
return False
def check_too_far(
newpoints: list[Point], points: list[Point], tol: int = 4
) -> bool:
if len(points) < 2:
return False
avg = sum(points, Point(0.0, 0.0)) * 1.0 / len(points)
maxdist = max([p.distance(avg) for p in points])
for p in newpoints:
if p.distance(avg) > maxdist * tol:
return True
return False
def check_aconst(args: list[Point]) -> bool:
a, b, c, d, num, den = args
d = d + a - c
ang = ang_between(a, b, d)
if ang < 0:
ang += np.pi
return close_enough(ang, num * np.pi / den)
def check(name: str, args: list[Union[gm.Point, Point]]) -> bool:
"""Numerical check."""
if name == 'eqangle6':
name = 'eqangle'
elif name == 'eqratio6':
name = 'eqratio'
elif name in ['simtri2', 'simtri*']:
name = 'simtri'
elif name in ['contri2', 'contri*']:
name = 'contri'
elif name == 'para':
name = 'para_or_coll'
elif name == 'on_line':
name = 'coll'
elif name in ['rcompute', 'acompute']:
return True
elif name in ['fixl', 'fixc', 'fixb', 'fixt', 'fixp']:
return True
fn_name = 'check_' + name
if fn_name not in globals():
return None
fun = globals()['check_' + name]
args = [p.num if isinstance(p, gm.Point) else p for p in args]
return fun(args)
def check_circle(points: list[Point]) -> bool:
if len(points) != 4:
return False
o, a, b, c = points
oa, ob, oc = o.distance(a), o.distance(b), o.distance(c)
return close_enough(oa, ob) and close_enough(ob, oc)
def check_coll(points: list[Point]) -> bool:
a, b = points[:2]
l = Line(a, b)
for p in points[2:]:
if abs(l(p.x, p.y)) > ATOM:
return False
return True
def check_ncoll(points: list[Point]) -> bool:
return not check_coll(points)
def check_sameside(points: list[Point]) -> bool:
b, a, c, y, x, z = points
# whether b is to the same side of a & c as y is to x & z
ba = b - a
bc = b - c
yx = y - x
yz = y - z
return ba.dot(bc) * yx.dot(yz) > 0
def check_para_or_coll(points: list[Point]) -> bool:
return check_para(points) or check_coll(points)
def check_para(points: list[Point]) -> bool:
a, b, c, d = points
ab = Line(a, b)
cd = Line(c, d)
if ab.same(cd):
return False
return ab.is_parallel(cd)
def check_perp(points: list[Point]) -> bool:
a, b, c, d = points
ab = Line(a, b)
cd = Line(c, d)
return ab.is_perp(cd)
def check_cyclic(points: list[Point]) -> bool:
points = list(set(points))
(a, b, c), *ps = points
circle = Circle(p1=a, p2=b, p3=c)
for d in ps:
if not close_enough(d.distance(circle.center), circle.radius):
return False
return True
def bring_together(
a: Point, b: Point, c: Point, d: Point
) -> tuple[Point, Point, Point, Point]:
ab = Line(a, b)
cd = Line(c, d)
x = line_line_intersection(ab, cd)
unit = Circle(center=x, radius=1.0)
y, _ = line_circle_intersection(ab, unit)
z, _ = line_circle_intersection(cd, unit)
return x, y, x, z
def same_clock(
a: Point, b: Point, c: Point, d: Point, e: Point, f: Point
) -> bool:
ba = b - a
cb = c - b
ed = e - d
fe = f - e
return (ba.x * cb.y - ba.y * cb.x) * (ed.x * fe.y - ed.y * fe.x) > 0
def check_const_angle(points: list[Point]) -> bool:
"""Check if the angle is equal to the given constant."""
a, b, c, d, m, n = points
a, b, c, d = bring_together(a, b, c, d)
ba = b - a
dc = d - c
a3 = np.arctan2(ba.y, ba.x)
a4 = np.arctan2(dc.y, dc.x)
y = a3 - a4
return close_enough(m / n % 1, y / np.pi % 1)
def check_eqangle(points: list[Point]) -> bool:
"""Check if 8 points make 2 equal angles."""
a, b, c, d, e, f, g, h = points
ab = Line(a, b)
cd = Line(c, d)
ef = Line(e, f)
gh = Line(g, h)
if ab.is_parallel(cd):
return ef.is_parallel(gh)
if ef.is_parallel(gh):
return ab.is_parallel(cd)
a, b, c, d = bring_together(a, b, c, d)
e, f, g, h = bring_together(e, f, g, h)
ba = b - a
dc = d - c
fe = f - e
hg = h - g
sameclock = (ba.x * dc.y - ba.y * dc.x) * (fe.x * hg.y - fe.y * hg.x) > 0
if not sameclock:
ba = ba * -1.0
a1 = np.arctan2(fe.y, fe.x)
a2 = np.arctan2(hg.y, hg.x)
x = a1 - a2
a3 = np.arctan2(ba.y, ba.x)
a4 = np.arctan2(dc.y, dc.x)
y = a3 - a4
xy = (x - y) % (2 * np.pi)
return close_enough(xy, 0, tol=1e-11) or close_enough(
xy, 2 * np.pi, tol=1e-11
)
def check_eqratio(points: list[Point]) -> bool:
a, b, c, d, e, f, g, h = points
ab = a.distance(b)
cd = c.distance(d)
ef = e.distance(f)
gh = g.distance(h)
return close_enough(ab * gh, cd * ef)
def check_cong(points: list[Point]) -> bool:
a, b, c, d = points
return close_enough(a.distance(b), c.distance(d))
def check_midp(points: list[Point]) -> bool:
a, b, c = points
return check_coll(points) and close_enough(a.distance(b), a.distance(c))
def check_simtri(points: list[Point]) -> bool:
"""Check if 6 points make a pair of similar triangles."""
a, b, c, x, y, z = points
ab = a.distance(b)
bc = b.distance(c)
ca = c.distance(a)
xy = x.distance(y)
yz = y.distance(z)
zx = z.distance(x)
tol = 1e-9
return close_enough(ab * yz, bc * xy, tol) and close_enough(
bc * zx, ca * yz, tol
)
def check_contri(points: list[Point]) -> bool:
a, b, c, x, y, z = points
ab = a.distance(b)
bc = b.distance(c)
ca = c.distance(a)
xy = x.distance(y)
yz = y.distance(z)
zx = z.distance(x)
tol = 1e-9
return (
close_enough(ab, xy, tol)
and close_enough(bc, yz, tol)
and close_enough(ca, zx, tol)
)
def check_ratio(points: list[Point]) -> bool:
a, b, c, d, m, n = points
ab = a.distance(b)
cd = c.distance(d)
return close_enough(ab * n, cd * m)
def draw_angle(
ax: matplotlib.axes.Axes,
head: Point,
p1: Point,
p2: Point,
color: Any = 'red',
alpha: float = 0.5,
frac: float = 1.0,
) -> None:
"""Draw an angle on plt ax."""
d1 = p1 - head
d2 = p2 - head
a1 = np.arctan2(float(d1.y), float(d1.x))
a2 = np.arctan2(float(d2.y), float(d2.x))
a1, a2 = a1 * 180 / np.pi, a2 * 180 / np.pi
a1, a2 = a1 % 360, a2 % 360
if a1 > a2:
a1, a2 = a2, a1
if a2 - a1 > 180:
a1, a2 = a2, a1
b1, b2 = a1, a2
if b1 > b2:
b2 += 360
d = b2 - b1
# if d >= 90:
# return
scale = min(2.0, 90 / d)
scale = max(scale, 0.4)
fov = matplotlib.patches.Wedge(
(float(head.x), float(head.y)),
unif(0.075, 0.125) * scale * frac,
a1,
a2,
color=color,
alpha=alpha,
)
ax.add_artist(fov)
def naming_position(
ax: matplotlib.axes.Axes, p: Point, lines: list[Line], circles: list[Circle]
) -> tuple[float, float]:
"""Figure out a good naming position on the drawing."""
_ = ax
r = 0.08
c = Circle(center=p, radius=r)
avoid = []
for p1, p2 in lines:
try:
avoid.extend(circle_segment_intersect(c, p1, p2))
except InvalidQuadSolveError:
continue
for x in circles:
try:
avoid.extend(circle_circle_intersection(c, x))
except InvalidQuadSolveError:
continue
if not avoid:
return [p.x + 0.01, p.y + 0.01]
angs = sorted([ang_of(p, a) for a in avoid])
angs += [angs[0] + 2 * np.pi]
angs = [(angs[i + 1] - a, a) for i, a in enumerate(angs[:-1])]
d, a = max(angs)
ang = a + d / 2
name_pos = p + Point(np.cos(ang), np.sin(ang)) * r
x, y = (name_pos.x - r / 1.5, name_pos.y - r / 1.5)
return x, y
def draw_point(
ax: matplotlib.axes.Axes,
p: Point,
name: str,
lines: list[Line],
circles: list[Circle],
color: Any = 'white',
size: float = 15,
) -> None:
"""draw a point."""
ax.scatter(p.x, p.y, color=color, s=size)
if color == 'white':
color = 'lightgreen'
else:
color = 'grey'
name = name.upper()
if len(name) > 1:
name = name[0] + '_' + name[1:]
ax.annotate(
name, naming_position(ax, p, lines, circles), color=color, fontsize=15
)
def _draw_line(
ax: matplotlib.axes.Axes,
p1: Point,
p2: Point,
color: Any = 'white',
lw: float = 1.2,
alpha: float = 0.8,
) -> None:
"""Draw a line in matplotlib."""
ls = '-'
if color == '--':
color = 'black'
ls = '--'
lx, ly = (p1.x, p2.x), (p1.y, p2.y)
ax.plot(lx, ly, color=color, lw=lw, alpha=alpha, ls=ls)
def draw_line(
ax: matplotlib.axes.Axes, line: Line, color: Any = 'white'
) -> tuple[Point, Point]:
"""Draw a line."""
points = line.neighbors(gm.Point)
if len(points) <= 1:
return
points = [p.num for p in points]
p1, p2 = points[:2]
pmin, pmax = (p1, 0.0), (p2, (p2 - p1).dot(p2 - p1))
for p in points[2:]:
v = (p - p1).dot(p2 - p1)
if v < pmin[1]:
pmin = p, v
if v > pmax[1]:
pmax = p, v
p1, p2 = pmin[0], pmax[0]
_draw_line(ax, p1, p2, color=color)
return p1, p2
def _draw_circle(
ax: matplotlib.axes.Axes, c: Circle, color: Any = 'cyan', lw: float = 1.2
) -> None:
ls = '-'
if color == '--':
color = 'black'
ls = '--'
ax.add_patch(
plt.Circle(
(c.center.x, c.center.y),
c.radius,
color=color,
alpha=0.8,
fill=False,
lw=lw,
ls=ls,
)
)
def draw_circle(
ax: matplotlib.axes.Axes, circle: Circle, color: Any = 'cyan'
) -> Circle:
"""Draw a circle."""
if circle.num is not None:
circle = circle.num
else:
points = circle.neighbors(gm.Point)
if len(points) <= 2:
return
points = [p.num for p in points]
p1, p2, p3 = points[:3]
circle = Circle(p1=p1, p2=p2, p3=p3)
_draw_circle(ax, circle, color)
return circle
def mark_segment(
ax: matplotlib.axes.Axes, p1: Point, p2: Point, color: Any, alpha: float
) -> None:
_ = alpha
x, y = (p1.x + p2.x) / 2, (p1.y + p2.y) / 2
ax.scatter(x, y, color=color, alpha=1.0, marker='o', s=50)
def highlight_angle(
ax: matplotlib.axes.Axes,
a: Point,
b: Point,
c: Point,
d: Point,
color: Any,
alpha: float,
) -> None:
"""Highlight an angle between ab and cd with (color, alpha)."""
try:
a, b, c, d = bring_together(a, b, c, d)
except: # pylint: disable=bare-except
return
draw_angle(ax, a, b, d, color=color, alpha=alpha, frac=1.0)
def highlight(
ax: matplotlib.axes.Axes,
name: str,
args: list[gm.Point],
lcolor: Any,
color1: Any,
color2: Any,
) -> None:
"""Draw highlights."""
args = list(map(lambda x: x.num if isinstance(x, gm.Point) else x, args))
if name == 'cyclic':
a, b, c, d = args
_draw_circle(ax, Circle(p1=a, p2=b, p3=c), color=color1, lw=2.0)
if name == 'coll':
a, b, c = args
a, b = max(a, b, c), min(a, b, c)
_draw_line(ax, a, b, color=color1, lw=2.0)
if name == 'para':
a, b, c, d = args
_draw_line(ax, a, b, color=color1, lw=2.0)
_draw_line(ax, c, d, color=color2, lw=2.0)
if name == 'eqangle':
a, b, c, d, e, f, g, h = args
x = line_line_intersection(Line(a, b), Line(c, d))
if b.distance(x) > a.distance(x):
a, b = b, a
if d.distance(x) > c.distance(x):
c, d = d, c
a, b, d = x, a, c
y = line_line_intersection(Line(e, f), Line(g, h))
if f.distance(y) > e.distance(y):
e, f = f, e
if h.distance(y) > g.distance(y):
g, h = h, g
e, f, h = y, e, g
_draw_line(ax, a, b, color=lcolor, lw=2.0)
_draw_line(ax, a, d, color=lcolor, lw=2.0)
_draw_line(ax, e, f, color=lcolor, lw=2.0)
_draw_line(ax, e, h, color=lcolor, lw=2.0)
if color1 == '--':
color1 = 'red'
draw_angle(ax, a, b, d, color=color1, alpha=0.5)
if color2 == '--':
color2 = 'red'
draw_angle(ax, e, f, h, color=color2, alpha=0.5)
if name == 'perp':
a, b, c, d = args
_draw_line(ax, a, b, color=color1, lw=2.0)
_draw_line(ax, c, d, color=color1, lw=2.0)
if name == 'ratio':
a, b, c, d, m, n = args
_draw_line(ax, a, b, color=color1, lw=2.0)
_draw_line(ax, c, d, color=color2, lw=2.0)
if name == 'cong':
a, b, c, d = args
_draw_line(ax, a, b, color=color1, lw=2.0)
_draw_line(ax, c, d, color=color2, lw=2.0)
if name == 'midp':
m, a, b = args
_draw_line(ax, a, m, color=color1, lw=2.0, alpha=0.5)
_draw_line(ax, b, m, color=color2, lw=2.0, alpha=0.5)
if name == 'eqratio':
a, b, c, d, m, n, p, q = args
_draw_line(ax, a, b, color=color1, lw=2.0, alpha=0.5)
_draw_line(ax, c, d, color=color2, lw=2.0, alpha=0.5)
_draw_line(ax, m, n, color=color1, lw=2.0, alpha=0.5)
_draw_line(ax, p, q, color=color2, lw=2.0, alpha=0.5)
HCOLORS = None
def _draw(
ax: matplotlib.axes.Axes,
points: list[gm.Point],
lines: list[gm.Line],
circles: list[gm.Circle],
goal: Any,
equals: list[tuple[Any, Any]],
highlights: list[tuple[str, list[gm.Point]]],
):
"""Draw everything."""
colors = ['red', 'green', 'blue', 'orange', 'magenta', 'purple']
pcolor = 'black'
lcolor = 'black'
ccolor = 'grey'
if get_theme() == 'dark':
pcolor, lcolor, ccolor = 'white', 'white', 'cyan'
elif get_theme() == 'light':
pcolor, lcolor, ccolor = 'black', 'black', 'blue'
elif get_theme() == 'grey':
pcolor, lcolor, ccolor = 'black', 'black', 'grey'
colors = ['grey']
line_boundaries = []
for l in lines:
p1, p2 = draw_line(ax, l, color=lcolor)
line_boundaries.append((p1, p2))
circles = [draw_circle(ax, c, color=ccolor) for c in circles]
for p in points:
draw_point(ax, p.num, p.name, line_boundaries, circles, color=pcolor)
if equals:
for i, segs in enumerate(equals['segments']):
color = colors[i % len(colors)]
for a, b in segs:
mark_segment(ax, a, b, color, 0.5)
for i, angs in enumerate(equals['angles']):
color = colors[i % len(colors)]
for a, b, c, d in angs:
highlight_angle(ax, a, b, c, d, color, 0.5)
if highlights:
global HCOLORS
if HCOLORS is None:
HCOLORS = [k for k in mcolors.TABLEAU_COLORS.keys() if 'red' not in k]
for i, (name, args) in enumerate(highlights):
color_i = HCOLORS[i % len(HCOLORS)]
highlight(ax, name, args, 'black', color_i, color_i)
if goal:
name, args = goal
lcolor = color1 = color2 = 'red'
highlight(ax, name, args, lcolor, color1, color2)
THEME = 'dark'
def set_theme(theme) -> None:
global THEME
THEME = theme
def get_theme() -> str:
return THEME
def draw(
points: list[gm.Point],
lines: list[gm.Line],
circles: list[gm.Circle],
segments: list[gm.Segment],
goal: Any = None,
highlights: list[tuple[str, list[gm.Point]]] = None,
equals: list[tuple[Any, Any]] = None,
block: bool = True,
save_to: str = None,
theme: str = 'dark',
) -> None:
"""Draw everything on the same canvas."""
plt.close()
imsize = 512 / 100
fig, ax = plt.subplots(figsize=(imsize, imsize), dpi=100)
set_theme(theme)
if get_theme() == 'dark':
ax.set_facecolor((0.0, 0.0, 0.0))
else:
ax.set_facecolor((1.0, 1.0, 1.0))
_draw(ax, points, lines, circles, goal, equals, highlights)
plt.axis('equal')
fig.subplots_adjust(left=0, right=1, top=1, bottom=0, wspace=0, hspace=0)
if points:
xmin = min([p.num.x for p in points])
xmax = max([p.num.x for p in points])
ymin = min([p.num.y for p in points])
ymax = max([p.num.y for p in points])
plt.margins((xmax - xmin) * 0.1, (ymax - ymin) * 0.1)
plt.show(block=block)
def close_enough(a: float, b: float, tol: float = 1e-12) -> bool:
return abs(a - b) < tol
def assert_close_enough(a: float, b: float, tol: float = 1e-12) -> None:
assert close_enough(a, b, tol), f'|{a}-{b}| = {abs(a-b)} >= {tol}'
def ang_of(tail: Point, head: Point) -> float:
vector = head - tail
arctan = np.arctan2(vector.y, vector.x) % (2 * np.pi)
return arctan
def ang_between(tail: Point, head1: Point, head2: Point) -> float:
ang1 = ang_of(tail, head1)
ang2 = ang_of(tail, head2)
diff = ang1 - ang2
# return diff % (2*np.pi)
if diff > np.pi:
return diff - 2 * np.pi
if diff < -np.pi:
return 2 * np.pi + diff
return diff
def head_from(tail: Point, ang: float, length: float = 1) -> Point:
vector = Point(np.cos(ang) * length, np.sin(ang) * length)
return tail + vector
def random_points(n: int = 3) -> list[Point]:
return [Point(unif(-1, 1), unif(-1, 1)) for _ in range(n)]
def random_rfss(*points: list[Point]) -> list[Point]:
"""Random rotate-flip-scale-shift a point cloud."""
# center point cloud.
average = sum(points, Point(0.0, 0.0)) * (1.0 / len(points))
points = [p - average for p in points]
# rotate
ang = unif(0.0, 2 * np.pi)
sin, cos = np.sin(ang), np.cos(ang)
# scale and shift
scale = unif(0.5, 2.0)
shift = Point(unif(-1, 1), unif(-1, 1))
points = [p.rotate(sin, cos) * scale + shift for p in points]
# randomly flip
if np.random.rand() < 0.5:
points = [p.flip() for p in points]
return points
def reduce(
objs: list[Union[Point, Line, Circle, HalfLine, HoleCircle]],
existing_points: list[Point],
) -> list[Point]:
"""Reduce intersecting objects into one point of intersections."""
if all(isinstance(o, Point) for o in objs):
return objs
elif len(objs) == 1:
return objs[0].sample_within(existing_points)
elif len(objs) == 2:
a, b = objs
result = a.intersect(b)
if isinstance(result, Point):
return [result]
a, b = result
a_close = any([a.close(x) for x in existing_points])
if a_close:
return [b]
b_close = any([b.close(x) for x in existing_points])
if b_close:
return [a]
return [np.random.choice([a, b])]
else:
raise ValueError(f'Cannot reduce {objs}')
def sketch(
name: str, args: list[Union[Point, gm.Point]]
) -> list[Union[Point, Line, Circle, HalfLine, HoleCircle]]:
fun = globals()['sketch_' + name]
args = [p.num if isinstance(p, gm.Point) else p for p in args]
out = fun(args)
# out can be one or multiple {Point/Line/HalfLine}
if isinstance(out, (tuple, list)):
return list(out)
return [out]
def sketch_on_opline(args: tuple[gm.Point, ...]) -> HalfLine:
a, b = args
return HalfLine(a, a + a - b)
def sketch_on_hline(args: tuple[gm.Point, ...]) -> HalfLine:
a, b = args
return HalfLine(a, b)
def sketch_ieq_triangle(args: tuple[gm.Point, ...]) -> tuple[Point, ...]:
a = Point(0.0, 0.0)
b = Point(1.0, 0.0)
c, _ = Circle(a, p1=b).intersect(Circle(b, p1=a))
return a, b, c
def sketch_incenter2(args: tuple[gm.Point, ...]) -> tuple[Point, ...]:
a, b, c = args
l1 = sketch_bisect([b, a, c])
l2 = sketch_bisect([a, b, c])
i = line_line_intersection(l1, l2)
x = i.foot(Line(b, c))
y = i.foot(Line(c, a))
z = i.foot(Line(a, b))
return x, y, z, i
def sketch_excenter2(args: tuple[gm.Point, ...]) -> tuple[Point, ...]:
a, b, c = args
l1 = sketch_bisect([b, a, c])
l2 = sketch_exbisect([a, b, c])
i = line_line_intersection(l1, l2)
x = i.foot(Line(b, c))
y = i.foot(Line(c, a))
z = i.foot(Line(a, b))
return x, y, z, i
def sketch_centroid(args: tuple[gm.Point, ...]) -> tuple[Point, ...]:
a, b, c = args
x = (b + c) * 0.5
y = (c + a) * 0.5
z = (a + b) * 0.5
i = line_line_intersection(Line(a, x), Line(b, y))
return x, y, z, i
def sketch_ninepoints(args: tuple[gm.Point, ...]) -> tuple[Point, ...]:
a, b, c = args
x = (b + c) * 0.5
y = (c + a) * 0.5
z = (a + b) * 0.5
c = Circle(p1=x, p2=y, p3=z)
return x, y, z, c.center
def sketch_2l1c(args: tuple[gm.Point, ...]) -> tuple[Point, ...]:
"""Sketch a circle touching two lines and another circle."""
a, b, c, p = args
bc, ac = Line(b, c), Line(a, c)
circle = Circle(p, p1=a)
d, d_ = line_circle_intersection(p.perpendicular_line(bc), circle)
if bc.diff_side(d_, a):
d = d_
e, e_ = line_circle_intersection(p.perpendicular_line(ac), circle)
if ac.diff_side(e_, b):
e = e_
df = d.perpendicular_line(Line(p, d))
ef = e.perpendicular_line(Line(p, e))
f = line_line_intersection(df, ef)
g, g_ = line_circle_intersection(Line(c, f), circle)
if bc.same_side(g_, a):
g = g_
b_ = c + (b - c) / b.distance(c)
a_ = c + (a - c) / a.distance(c)
m = (a_ + b_) * 0.5
x = line_line_intersection(Line(c, m), Line(p, g))
return x.foot(ac), x.foot(bc), g, x
def sketch_3peq(args: tuple[gm.Point, ...]) -> tuple[Point, ...]:
a, b, c = args
ab, bc, ca = Line(a, b), Line(b, c), Line(c, a)
z = b + (c - b) * np.random.uniform(-0.5, 1.5)
z_ = z * 2 - c
l = z_.parallel_line(ca)
x = line_line_intersection(l, ab)
y = z * 2 - x
return x, y, z
def try_to_sketch_intersect(
name1: str,
args1: list[Union[gm.Point, Point]],
name2: str,
args2: list[Union[gm.Point, Point]],
existing_points: list[Point],
) -> Optional[Point]:
"""Try to sketch an intersection between two objects."""
obj1 = sketch(name1, args1)[0]
obj2 = sketch(name2, args2)[0]
if isinstance(obj1, Line) and isinstance(obj2, Line):
fn = line_line_intersection
elif isinstance(obj1, Circle) and isinstance(obj2, Circle):
fn = circle_circle_intersection
else:
fn = line_circle_intersection
if isinstance(obj2, Line) and isinstance(obj1, Circle):
obj1, obj2 = obj2, obj1
try:
x = fn(obj1, obj2)
except: # pylint: disable=bare-except
return None
if isinstance(x, Point):
return x
x1, x2 = x
close1 = check_too_close([x1], existing_points)
far1 = check_too_far([x1], existing_points)
if not close1 and not far1:
return x1
close2 = check_too_close([x2], existing_points)
far2 = check_too_far([x2], existing_points)
if not close2 and not far2:
return x2
return None
def sketch_acircle(args: tuple[gm.Point, ...]) -> Circle:
a, b, c, d, f = args
de = sketch_aline([c, a, b, f, d])
fe = sketch_aline([a, c, b, d, f])
e = line_line_intersection(de, fe)
return Circle(p1=d, p2=e, p3=f)
def sketch_aline(args: tuple[gm.Point, ...]) -> HalfLine:
"""Sketch the construction aline."""
A, B, C, D, E = args
ab = A - B
cb = C - B
de = D - E
dab = A.distance(B)
ang_ab = np.arctan2(ab.y / dab, ab.x / dab)
dcb = C.distance(B)
ang_bc = np.arctan2(cb.y / dcb, cb.x / dcb)
dde = D.distance(E)
ang_de = np.arctan2(de.y / dde, de.x / dde)
ang_ex = ang_de + ang_bc - ang_ab
X = E + Point(np.cos(ang_ex), np.sin(ang_ex))
return HalfLine(E, X)
def sketch_amirror(args: tuple[gm.Point, ...]) -> HalfLine:
"""Sketch the angle mirror."""
A, B, C = args # pylint: disable=invalid-name
ab = A - B
cb = C - B
dab = A.distance(B)
ang_ab = np.arctan2(ab.y / dab, ab.x / dab)
dcb = C.distance(B)
ang_bc = np.arctan2(cb.y / dcb, cb.x / dcb)
ang_bx = 2 * ang_bc - ang_ab
X = B + Point(np.cos(ang_bx), np.sin(ang_bx)) # pylint: disable=invalid-name
return HalfLine(B, X)
def sketch_bisect(args: tuple[gm.Point, ...]) -> Line:
a, b, c = args
ab = a.distance(b)
bc = b.distance(c)
x = b + (c - b) * (ab / bc)
m = (a + x) * 0.5
return Line(b, m)
def sketch_exbisect(args: tuple[gm.Point, ...]) -> Line:
a, b, c = args
return sketch_bisect(args).perpendicular_line(b)
def sketch_bline(args: tuple[gm.Point, ...]) -> Line:
a, b = args
m = (a + b) * 0.5
return m.perpendicular_line(Line(a, b))
def sketch_dia(args: tuple[gm.Point, ...]) -> Circle:
a, b = args
return Circle((a + b) * 0.5, p1=a)
def sketch_tangent(args: tuple[gm.Point, ...]) -> tuple[Point, Point]:
a, o, b = args
dia = sketch_dia([a, o])
return circle_circle_intersection(Circle(o, p1=b), dia)
def sketch_circle(args: tuple[gm.Point, ...]) -> Circle:
a, b, c = args
return Circle(center=a, radius=b.distance(c))
def sketch_cc_tangent(args: tuple[gm.Point, ...]) -> tuple[Point, ...]:
"""Sketch tangents to two circles."""
o, a, w, b = args
ra, rb = o.distance(a), w.distance(b)
ow = Line(o, w)
if close_enough(ra, rb):
oo = ow.perpendicular_line(o)
oa = Circle(o, ra)
x, z = line_circle_intersection(oo, oa)
y = x + w - o
t = z + w - o
return x, y, z, t
swap = rb > ra
if swap:
o, a, w, b = w, b, o, a
ra, rb = rb, ra
oa = Circle(o, ra)
q = o + (w - o) * ra / (ra - rb)
x, z = circle_circle_intersection(sketch_dia([o, q]), oa)
y = w.foot(Line(x, q))
t = w.foot(Line(z, q))
if swap:
x, y, z, t = y, x, t, z
return x, y, z, t
def sketch_hcircle(args: tuple[gm.Point, ...]) -> HoleCircle:
a, b = args
return HoleCircle(center=a, radius=a.distance(b), hole=b)
def sketch_e5128(args: tuple[gm.Point, ...]) -> tuple[Point, Point]:
a, b, c, d = args
ad = Line(a, d)
g = (a + b) * 0.5
de = Line(d, g)
e, f = line_circle_intersection(de, Circle(c, p1=b))
if e.distance(d) < f.distance(d):
e = f
return e, g
def sketch_eq_quadrangle(args: tuple[gm.Point, ...]) -> tuple[Point, ...]:
"""Sketch quadrangle with two equal opposite sides."""
a = Point(0.0, 0.0)
b = Point(1.0, 0.0)
length = np.random.uniform(0.5, 2.0)
ang = np.random.uniform(np.pi / 3, np.pi * 2 / 3)
d = head_from(a, ang, length)
ang = ang_of(b, d)
ang = np.random.uniform(ang / 10, ang / 9)
c = head_from(b, ang, length)
a, b, c, d = random_rfss(a, b, c, d)
return a, b, c, d
def sketch_eq_trapezoid(args: tuple[gm.Point, ...]) -> tuple[Point, ...]:
a = Point(0.0, 0.0)
b = Point(1.0, 0.0)
l = unif(0.5, 2.0)
height = unif(0.5, 2.0)
c = Point(0.5 + l / 2.0, height)
d = Point(0.5 - l / 2.0, height)
a, b, c, d = random_rfss(a, b, c, d)
return a, b, c, d
def sketch_eqangle2(args: tuple[gm.Point, ...]) -> Point:
"""Sketch the def eqangle2."""
a, b, c = args
d = c * 2 - b
ba = b.distance(a)
bc = b.distance(c)
l = ba * ba / bc
if unif(0.0, 1.0) < 0.5:
be = min(l, bc)
be = unif(be * 0.1, be * 0.9)
else:
be = max(l, bc)
be = unif(be * 1.1, be * 1.5)
e = b + (c - b) * (be / bc)
y = b + (a - b) * (be / l)
return line_line_intersection(Line(c, y), Line(a, e))
def sketch_eqangle3(args: tuple[gm.Point, ...]) -> Circle:
a, b, d, e, f = args
de = d.distance(e)
ef = e.distance(f)
ab = b.distance(a)
ang_ax = ang_of(a, b) + ang_between(e, d, f)
x = head_from(a, ang_ax, length=de / ef * ab)
return Circle(p1=a, p2=b, p3=x)
def sketch_eqdia_quadrangle(args: tuple[gm.Point, ...]) -> tuple[Point, ...]:
"""Sketch quadrangle with two equal diagonals."""
m = unif(0.3, 0.7)
n = unif(0.3, 0.7)
a = Point(-m, 0.0)
c = Point(1 - m, 0.0)
b = Point(0.0, -n)
d = Point(0.0, 1 - n)
ang = unif(-0.25 * np.pi, 0.25 * np.pi)
sin, cos = np.sin(ang), np.cos(ang)
b = b.rotate(sin, cos)
d = d.rotate(sin, cos)
a, b, c, d = random_rfss(a, b, c, d)
return a, b, c, d
def sketch_free(args: tuple[gm.Point, ...]) -> Point:
return random_points(1)[0]
def sketch_isos(args: tuple[gm.Point, ...]) -> tuple[Point, ...]:
base = unif(0.5, 1.5)
height = unif(0.5, 1.5)
b = Point(-base / 2, 0.0)
c = Point(base / 2, 0.0)
a = Point(0.0, height)
a, b, c = random_rfss(a, b, c)
return a, b, c
def sketch_line(args: tuple[gm.Point, ...]) -> Line:
a, b = args
return Line(a, b)
def sketch_cyclic(args: tuple[gm.Point, ...]) -> Circle:
a, b, c = args
return Circle(p1=a, p2=b, p3=c)
def sketch_hline(args: tuple[gm.Point, ...]) -> HalfLine:
a, b = args
return HalfLine(a, b)
def sketch_midp(args: tuple[gm.Point, ...]) -> Point:
a, b = args
return (a + b) * 0.5
def sketch_pentagon(args: tuple[gm.Point, ...]) -> tuple[Point, ...]:
points = [Point(1.0, 0.0)]
ang = 0.0
for i in range(4):
ang += (2 * np.pi - ang) / (5 - i) * unif(0.5, 1.5)
point = Point(np.cos(ang), np.sin(ang))
points.append(point)
a, b, c, d, e = points # pylint: disable=unbalanced-tuple-unpacking
a, b, c, d, e = random_rfss(a, b, c, d, e)
return a, b, c, d, e
def sketch_pline(args: tuple[gm.Point, ...]) -> Line:
a, b, c = args
return a.parallel_line(Line(b, c))
def sketch_pmirror(args: tuple[gm.Point, ...]) -> Point:
a, b = args
return b * 2 - a
def sketch_quadrangle(args: tuple[gm.Point, ...]) -> tuple[Point, ...]:
"""Sketch a random quadrangle."""
m = unif(0.3, 0.7)
n = unif(0.3, 0.7)
a = Point(-m, 0.0)
c = Point(1 - m, 0.0)
b = Point(0.0, -unif(0.25, 0.75))
d = Point(0.0, unif(0.25, 0.75))
ang = unif(-0.25 * np.pi, 0.25 * np.pi)
sin, cos = np.sin(ang), np.cos(ang)
b = b.rotate(sin, cos)
d = d.rotate(sin, cos)
a, b, c, d = random_rfss(a, b, c, d)
return a, b, c, d
def sketch_r_trapezoid(args: tuple[gm.Point, ...]) -> tuple[Point, ...]:
a = Point(0.0, 1.0)
d = Point(0.0, 0.0)
b = Point(unif(0.5, 1.5), 1.0)
c = Point(unif(0.5, 1.5), 0.0)
a, b, c, d = random_rfss(a, b, c, d)
return a, b, c, d
def sketch_r_triangle(args: tuple[gm.Point, ...]) -> tuple[Point, ...]:
a = Point(0.0, 0.0)
b = Point(0.0, unif(0.5, 2.0))
c = Point(unif(0.5, 2.0), 0.0)
a, b, c = random_rfss(a, b, c)
return a, b, c
def sketch_rectangle(args: tuple[gm.Point, ...]) -> tuple[Point, ...]:
a = Point(0.0, 0.0)
b = Point(0.0, 1.0)
l = unif(0.5, 2.0)
c = Point(l, 1.0)
d = Point(l, 0.0)
a, b, c, d = random_rfss(a, b, c, d)
return a, b, c, d
def sketch_reflect(args: tuple[gm.Point, ...]) -> Point:
a, b, c = args
m = a.foot(Line(b, c))
return m * 2 - a
def sketch_risos(args: tuple[gm.Point, ...]) -> tuple[Point, ...]:
a = Point(0.0, 0.0)
b = Point(0.0, 1.0)
c = Point(1.0, 0.0)
a, b, c = random_rfss(a, b, c)
return a, b, c
def sketch_rotaten90(args: tuple[gm.Point, ...]) -> Point:
a, b = args
ang = -np.pi / 2
return a + (b - a).rotate(np.sin(ang), np.cos(ang))
def sketch_rotatep90(args: tuple[gm.Point, ...]) -> Point:
a, b = args
ang = np.pi / 2
return a + (b - a).rotate(np.sin(ang), np.cos(ang))
def sketch_s_angle(args: tuple[gm.Point, ...]) -> HalfLine:
a, b, y = args
ang = y / 180 * np.pi
x = b + (a - b).rotatea(ang)
return HalfLine(b, x)
def sketch_segment(args: tuple[gm.Point, ...]) -> tuple[Point, Point]:
a, b = random_points(2)
return a, b
def sketch_shift(args: tuple[gm.Point, ...]) -> Point:
a, b, c = args
return c + (b - a)
def sketch_square(args: tuple[gm.Point, ...]) -> tuple[Point, Point]:
a, b = args
c = b + (a - b).rotatea(-np.pi / 2)
d = a + (b - a).rotatea(np.pi / 2)
return c, d
def sketch_isquare(args: tuple[gm.Point, ...]) -> tuple[Point, ...]:
a = Point(0.0, 0.0)
b = Point(1.0, 0.0)
c = Point(1.0, 1.0)
d = Point(0.0, 1.0)
a, b, c, d = random_rfss(a, b, c, d)
return a, b, c, d
def sketch_tline(args: tuple[gm.Point, ...]) -> Line:
a, b, c = args
return a.perpendicular_line(Line(b, c))
def sketch_trapezoid(args: tuple[gm.Point, ...]) -> tuple[Point, ...]:
d = Point(0.0, 0.0)
c = Point(1.0, 0.0)
base = unif(0.5, 2.0)
height = unif(0.5, 2.0)
a = Point(unif(0.2, 0.5), height)
b = Point(a.x + base, height)
a, b, c, d = random_rfss(a, b, c, d)
return a, b, c, d
def sketch_triangle(args: tuple[gm.Point, ...]) -> tuple[Point, ...]:
a = Point(0.0, 0.0)
b = Point(1.0, 0.0)
ac = unif(0.5, 2.0)
ang = unif(0.2, 0.8) * np.pi
c = head_from(a, ang, ac)
return a, b, c
def sketch_triangle12(args: tuple[gm.Point, ...]) -> tuple[Point, ...]:
b = Point(0.0, 0.0)
c = Point(unif(1.5, 2.5), 0.0)
a, _ = circle_circle_intersection(Circle(b, 1.0), Circle(c, 2.0))
a, b, c = random_rfss(a, b, c)
return a, b, c
def sketch_trisect(args: tuple[gm.Point, ...]) -> tuple[Point, Point]:
"""Sketch two trisectors of an angle."""
a, b, c = args
ang1 = ang_of(b, a)
ang2 = ang_of(b, c)
swap = 0
if ang1 > ang2:
ang1, ang2 = ang2, ang1
swap += 1
if ang2 - ang1 > np.pi:
ang1, ang2 = ang2, ang1 + 2 * np.pi
swap += 1
angx = ang1 + (ang2 - ang1) / 3
angy = ang2 - (ang2 - ang1) / 3
x = b + Point(np.cos(angx), np.sin(angx))
y = b + Point(np.cos(angy), np.sin(angy))
ac = Line(a, c)
x = line_line_intersection(Line(b, x), ac)
y = line_line_intersection(Line(b, y), ac)
if swap == 1:
return y, x
return x, y
def sketch_trisegment(args: tuple[gm.Point, ...]) -> tuple[Point, Point]:
a, b = args
x, y = a + (b - a) * (1.0 / 3), a + (b - a) * (2.0 / 3)
return x, y