|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""A single transformer layer in inference mode. |
|
|
|
Modified |
|
https://github.com/google-research/meliad/blob/main/transformer/transformer_layer.py |
|
To accommodate sequence packing + kv cache + relative position during test time. |
|
""" |
|
|
|
from typing import Callable, Mapping, NewType, Optional, Tuple |
|
|
|
from absl import logging |
|
import gin |
|
import jax |
|
import jax.numpy as jnp |
|
from transformer import attention |
|
from transformer import nn_components |
|
from transformer import position |
|
from transformer import transformer_layer |
|
|
|
|
|
Array = jnp.ndarray |
|
DecoderState = NewType("DecoderState", Mapping[str, Array]) |
|
WindowState = Optional[Tuple[attention.KVITuple, Array]] |
|
|
|
|
|
@jax.vmap |
|
def update_slice_in_dim_1(array: Array, update: Array, idx: Array) -> Array: |
|
"""Update a stored keys/values slice for different-lengthed seqs in batch.""" |
|
return jax.lax.dynamic_update_slice_in_dim(array, update, idx, axis=0) |
|
|
|
|
|
def slice_in_dim_1(window_length: int) -> Callable[[Array, Array], Array]: |
|
@jax.vmap |
|
def fn(array: Array, idx: Array) -> Array: |
|
return jax.lax.dynamic_slice_in_dim(array, idx, window_length, axis=0) |
|
|
|
return fn |
|
|
|
|
|
@gin.configurable |
|
class TransformerLayerGenerate(transformer_layer.TransformerLayer): |
|
"""Full transformer layer, with attention.""" |
|
|
|
def _next_decoder_state( |
|
self, decoder_state: DecoderState, keys: Array, values: Array |
|
) -> Tuple[DecoderState, Array, Array]: |
|
"""Compute the next decoder state, and return keys,values to attend to. |
|
|
|
The keys,values returned from this function are drawn from the prior |
|
decoding state, and comprise a full window of local context. |
|
|
|
Args: |
|
decoder_state: The current decoder state, initially created using |
|
init_decoder_state(). |
|
keys: The key for the current token, of shape (batch_size, 1, dim) |
|
values: The value for the current token of shape (batch_size, 1, dim) |
|
|
|
Returns: |
|
(next_decoder_state, |
|
window of keys of shape (batch_size, window_length, dim), |
|
window of values of shape (batch_size, window_length, dim)) |
|
""" |
|
|
|
assert keys.shape[1] == 1 |
|
|
|
|
|
stored_keys = decoder_state["keys"] |
|
stored_values = decoder_state["values"] |
|
curr_index = decoder_state["current_index"] |
|
|
|
|
|
out_decoder_state = {} |
|
curr_win_index = curr_index - self.window_length |
|
|
|
|
|
|
|
out_keys = slice_in_dim_1(self.window_length)(stored_keys, curr_win_index) |
|
|
|
|
|
|
|
out_values = slice_in_dim_1(self.window_length)( |
|
stored_values, curr_win_index |
|
) |
|
|
|
|
|
|
|
|
|
stored_keys = update_slice_in_dim_1(stored_keys, keys, curr_index) |
|
|
|
|
|
stored_values = update_slice_in_dim_1(stored_values, values, curr_index) |
|
curr_index = curr_index + 1 |
|
|
|
|
|
out_decoder_state["keys"] = stored_keys |
|
out_decoder_state["values"] = stored_values |
|
out_decoder_state["current_index"] = curr_index |
|
out_decoder_state["relative_position_bias"] = decoder_state[ |
|
"relative_position_bias" |
|
] |
|
out_decoder_state["recurrent_kvq"] = decoder_state["recurrent_kvq"] |
|
|
|
return (DecoderState(out_decoder_state), out_keys, out_values) |
|
|
|
def __call__( |
|
self, |
|
xs: Array, |
|
start_of_sequence: Array, |
|
*, |
|
importance: Optional[Array] = None, |
|
cross_attention_kv: Optional[Tuple[Array, Array]] = None, |
|
window_state: Optional[WindowState] = None, |
|
decoder_state: Optional[DecoderState] = None, |
|
): |
|
"""Computes attention over a sequence of inputs. |
|
|
|
Args: |
|
xs: input sequence of shape (batch_size, sequence_length, num_hidden) |
|
start_of_sequence: An input array of shape (batch_size) --- The following |
|
must be passed by keyword only. --- |
|
importance: Array of shape (batch_size, sequence_length). An importance |
|
bias for attention. |
|
cross_attention_kv: Keys and values from encoder for cross-attention. |
|
window_state: State object which contains context from the prior window |
|
when using a transformer-XL or sliding window. Initially created with |
|
load_window_state(). |
|
decoder_state: State object for autoregressive decoding, initially created |
|
with from init_decoder_state(). |
|
|
|
Returns: |
|
(ys: outputs of shape (batch_size, sequence_length, num_hidden), |
|
importance_score: importance score for the next layer, |
|
next_window_state: state to pass to the next window, |
|
next_decoder_state: next decoder state for autoregressive decoding, |
|
viz_dict: dictionary of visualizations |
|
) |
|
""" |
|
|
|
xs = jnp.asarray(xs, dtype=self.dtype) |
|
logging.info("tlayer: recurrent = %r", self.recurrent_attention) |
|
logging.info("tlayer: compute_importance = %r", self.compute_importance) |
|
|
|
is_training = self.mode == "train" |
|
|
|
|
|
|
|
logging.info("tlayer: compute keys,values,queries.") |
|
(keys, values, queries, queries2) = self.tbase.kvq(xs) |
|
attention_scale_factors = self.tbase.attention_scale_factors() |
|
(_, sequence_length, num_heads, _) = queries.shape |
|
|
|
|
|
|
|
if decoder_state is not None: |
|
logging.info("tlayer: using autoregressive decoder.") |
|
|
|
|
|
|
|
assert window_state is None |
|
|
|
prev_kvi = None |
|
recurrent_state = None |
|
cross_attention_kv = None |
|
rel_position_bias = decoder_state["relative_position_bias"] |
|
causal_mask = None |
|
dropout_multiplier = None |
|
|
|
|
|
cached_recurrent_kvq = decoder_state["recurrent_kvq"] |
|
if cached_recurrent_kvq is not None: |
|
assert cross_attention_kv is None |
|
cross_attention_kv = (cached_recurrent_kvq[0], cached_recurrent_kvq[1]) |
|
del cached_recurrent_kvq |
|
|
|
|
|
(decoder_state, keys, values) = self._next_decoder_state( |
|
decoder_state, keys, values |
|
) |
|
|
|
|
|
assert keys.shape[1] == self.window_length |
|
kq_relative_offset = self.window_length |
|
|
|
if not self.use_long_xl_architecture: |
|
kqpos = position.relative_positions( |
|
1, self.window_length, offset=0 |
|
) |
|
current_idx = decoder_state["current_index"] |
|
|
|
|
|
kqpos = jnp.expand_dims(kqpos, axis=(0, 1)) |
|
kqpos = jnp.tile(kqpos, (1, self.num_heads, 1, 1)) |
|
|
|
|
|
current_idx = jnp.expand_dims(current_idx, axis=(1, 2, 3)) |
|
|
|
causal_mask = kqpos > self.window_length * 2 - current_idx |
|
else: |
|
logging.info("tlayer: windowed attention.") |
|
|
|
|
|
|
|
(prev_kvi, recurrent_state) = ( |
|
window_state |
|
) |
|
|
|
|
|
(num_queries, num_keys) = attention.sliding_attention_window_shape( |
|
(keys, values, importance), |
|
prev_kvi, |
|
queries, |
|
window_length=self.window_length, |
|
) |
|
kq_relative_offset = num_keys - num_queries |
|
|
|
|
|
|
|
if self.relative_positions is not None: |
|
rel_position_bias = self.relative_positions( |
|
num_queries, num_keys, bidirectional=False |
|
) |
|
else: |
|
rel_position_bias = None |
|
|
|
|
|
if self.use_causal_mask: |
|
causal_mask = position.causal_mask( |
|
num_queries, num_keys, window_length=self.window_length |
|
) |
|
else: |
|
causal_mask = None |
|
|
|
|
|
|
|
if self.attn_dropout_rate > 0.0 and is_training: |
|
dropout_rng = self.make_rng("dropout") |
|
attn_shape = (self.num_heads, num_queries, num_keys) |
|
dropout_multiplier = nn_components.dropout_multiplier_mask( |
|
dropout_rng, self.attn_dropout_rate, attn_shape, self.dtype |
|
) |
|
else: |
|
dropout_multiplier = None |
|
|
|
|
|
|
|
(mode, _, update_memory) = self._get_cache_name_from_mode(self.mode) |
|
external_kv = self._query_external_memory( |
|
keys, |
|
values, |
|
queries, |
|
start_of_sequence=start_of_sequence, |
|
mode=mode, |
|
update_memory=decoder_state is None and update_memory, |
|
) |
|
|
|
if ( |
|
self.memory is not None |
|
and self.memory_combine_with_local == "TRAINABLE_WEIGHTED_MEAN" |
|
): |
|
external_memory_bias = jnp.asarray(self.memory_bias, dtype=self.dtype) |
|
external_memory_bias = jnp.reshape( |
|
external_memory_bias, (1, 1, num_heads, 1) |
|
) |
|
external_memory_bias = jax.nn.sigmoid(external_memory_bias) |
|
else: |
|
external_memory_bias = None |
|
|
|
|
|
|
|
if sequence_length < self.window_length: |
|
num_windows = 1 |
|
elif sequence_length == self.window_length: |
|
num_windows = 1 |
|
if self.use_long_xl_architecture: |
|
assert prev_kvi is not None |
|
else: |
|
if not self.use_long_xl_architecture: |
|
raise ValueError("Can only use sliding window with Transformer XL.") |
|
num_windows = sequence_length // self.window_length |
|
if (num_windows * self.window_length) != sequence_length: |
|
raise ValueError( |
|
f"Window length {self.window_length} must be a " |
|
+ f"multiple of sequence length {sequence_length}" |
|
) |
|
logging.info("tlayer: num_windows = %d.", num_windows) |
|
|
|
|
|
|
|
def single_window_attention( |
|
carry: tuple[Array, Array], inputs_w: tuple[Array, Array] |
|
) -> tuple[tuple[Array, Array], tuple[Array, Array]]: |
|
|
|
|
|
nonlocal rel_position_bias |
|
nonlocal causal_mask |
|
nonlocal kq_relative_offset |
|
nonlocal dropout_multiplier |
|
nonlocal attention_scale_factors |
|
nonlocal external_memory_bias |
|
nonlocal cross_attention_kv |
|
|
|
|
|
|
|
(prev_kvi_w, rec_state) = carry |
|
(kvqi_w, external_kv_w) = inputs_w |
|
|
|
|
|
|
|
|
|
(kvqi_w, next_kvi_w) = attention.concat_kvqi(kvqi_w, prev_kvi_w) |
|
(keys_w, values_w, queries_w, queries2_w, importance_w) = kvqi_w |
|
|
|
|
|
|
|
if rec_state is not None: |
|
logging.info("tlayer: recurrent attention.") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
logging.info("tlayer: recurrent kvq.") |
|
rec_kvq = self.recurrent_tbase.kvq(rec_state) |
|
r_scale_factors = self.recurrent_tbase.attention_scale_factors() |
|
(r_keys, r_values, r_queries, r_queries2) = rec_kvq |
|
|
|
|
|
logging.info("tlayer: recurrent self-attention.") |
|
r_attn_ys = attention.simple_attention( |
|
r_keys, |
|
r_values, |
|
r_queries, |
|
None, |
|
scale_factor=r_scale_factors[0], |
|
dtype=self.dtype, |
|
) |
|
|
|
logging.info("tlayer: recurrent cross-attention.") |
|
r_cross_attn_ys = attention.simple_attention( |
|
keys_w, |
|
values_w, |
|
r_queries2, |
|
importance_w, |
|
scale_factor=r_scale_factors[1], |
|
dtype=self.dtype, |
|
) |
|
|
|
|
|
logging.info("tlayer: recurrent ffn.") |
|
next_rec_state = self.recurrent_tbase.post_attn_ffn( |
|
rec_state, r_attn_ys, r_cross_attn_ys |
|
) |
|
|
|
|
|
assert cross_attention_kv is None |
|
local_cross_attention_kv = (r_keys, r_values) |
|
else: |
|
|
|
next_rec_state = None |
|
local_cross_attention_kv = cross_attention_kv |
|
|
|
|
|
if self.relative_position_type == "rotary": |
|
logging.info( |
|
"Using rotary position encodings (RoPE), offset = %d", |
|
kq_relative_offset, |
|
) |
|
(keys_w, queries_w) = position.rotate_kq( |
|
keys_w, queries_w, max_wavelength=10_000, offset=kq_relative_offset |
|
) |
|
|
|
|
|
logging.info("tlayer: self-attention.") |
|
attn_ys_w = attention.simple_attention( |
|
keys_w, |
|
values_w, |
|
queries_w, |
|
importance_w, |
|
relative_position_bias=rel_position_bias, |
|
scale_factor=attention_scale_factors[0], |
|
causal_mask=causal_mask, |
|
dropout_multiplier=dropout_multiplier, |
|
dtype=self.dtype, |
|
) |
|
|
|
|
|
if external_kv_w is not None: |
|
(external_keys_w, external_values_w) = external_kv_w |
|
y_ext = attention.external_attention( |
|
external_keys_w, |
|
external_values_w, |
|
queries_w, |
|
scale_factor=attention_scale_factors[0], |
|
) |
|
if external_memory_bias is not None: |
|
ebias = external_memory_bias |
|
attn_ys_w = (attn_ys_w * (1 - ebias)) + (y_ext * ebias) |
|
elif self.memory_combine_with_local == "ADD": |
|
attn_ys_w += y_ext |
|
elif self.memory_combine_with_local == "STOP_FORWARD": |
|
attn_ys_w = y_ext + (attn_ys_w - jax.lax.stop_gradient(attn_ys_w)) |
|
else: |
|
raise ValueError( |
|
f"Unexpected setting: {self.memory_combine_with_local = }" |
|
) |
|
|
|
|
|
if local_cross_attention_kv is not None: |
|
logging.info("tlayer: cross-attention.") |
|
(c_keys, c_values) = local_cross_attention_kv |
|
|
|
|
|
cross_attn_ys_w = attention.simple_attention( |
|
c_keys, |
|
c_values, |
|
queries2_w, |
|
None, |
|
scale_factor=attention_scale_factors[1], |
|
dtype=self.dtype, |
|
) |
|
else: |
|
cross_attn_ys_w = None |
|
|
|
|
|
return ((next_kvi_w, next_rec_state), (attn_ys_w, cross_attn_ys_w)) |
|
|
|
|
|
|
|
if ( |
|
self.recurrent_attention |
|
and 0 <= self.max_unrolled_windows |
|
and self.max_unrolled_windows < num_windows |
|
): |
|
logging.info("tlayer: force initialization of recurrent_tbase.") |
|
self.recurrent_tbase.force_init(recurrent_state) |
|
|
|
|
|
|
|
initial_carry = (prev_kvi, recurrent_state) |
|
kvqi = (keys, values, queries, queries2, importance) |
|
attn_inputs = (kvqi, external_kv) |
|
(next_carry, attn_outputs) = attention.split_and_scan( |
|
single_window_attention, |
|
initial_carry, |
|
attn_inputs, |
|
sections=num_windows, |
|
axis=1, |
|
max_unrolled_windows=self.max_unrolled_windows, |
|
) |
|
(attn_ys, cross_attn_ys) = attn_outputs |
|
|
|
logging.info("tlayer: End windows.") |
|
|
|
|
|
|
|
logging.info("tlayer: final FFN.") |
|
ys = self.tbase.post_attn_ffn(xs, attn_ys, cross_attn_ys) |
|
|
|
|
|
if self.compute_importance: |
|
(batch_size, sequence_length, _) = ys.shape |
|
importance_score = self.importance_layer(ys) |
|
importance_score = importance_score.reshape((batch_size, sequence_length)) |
|
else: |
|
importance_score = None |
|
|
|
next_window_state = next_carry if window_state is not None else None |
|
viz_dict = {} |
|
return (ys, importance_score, next_window_state, decoder_state, viz_dict) |
|
|
|
def init_decoder_state_vanilla( |
|
self, sequence_length: int, start_of_sequence: Array |
|
) -> DecoderState: |
|
"""Initialize decoder state for autoregressive generation. |
|
|
|
Args: |
|
sequence_length: The maximum length of the sequence to generate. |
|
start_of_sequence: Array of boolean of shape (batch_size,) True if |
|
starting a new sequence (with no prefix). |
|
|
|
Returns: |
|
A state object that can be passed to __call__. |
|
""" |
|
|
|
if not self.use_causal_mask: |
|
raise ValueError("Generator must have been trained with a causal mask.") |
|
|
|
|
|
rel_position_bias = self.relative_positions( |
|
1, self.window_length, offset=self.window_length, bidirectional=False |
|
) |
|
rel_position_bias = jnp.tile(rel_position_bias, (self.batch_size, 1, 1, 1)) |
|
|
|
|
|
|
|
num_keys = sequence_length + self.window_length |
|
stored_shape = (self.batch_size, num_keys, self.num_heads, self.head_size) |
|
stored_keys = jnp.zeros(stored_shape, dtype=self.dtype) |
|
stored_values = jnp.zeros(stored_shape, dtype=self.dtype) |
|
|
|
recurrent_kvq = None |
|
current_index = jnp.array([self.window_length] * self.batch_size) |
|
|
|
decoder_state_dict = { |
|
"keys": stored_keys, |
|
"values": stored_values, |
|
"current_index": current_index, |
|
"relative_position_bias": rel_position_bias, |
|
"recurrent_kvq": recurrent_kvq, |
|
} |
|
return DecoderState(decoder_state_dict) |
|
|