File size: 11,538 Bytes
cfeea40 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
from typing import Callable
import torch
import torch.nn as nn
from mattergen.common.data.chemgraph import ChemGraph
from mattergen.common.data.types import PropertySourceId
from mattergen.common.utils.globals import MAX_ATOMIC_NUM, SELECTED_ATOMIC_NUMBERS
from mattergen.diffusion.model_utils import NoiseLevelEncoding
from mattergen.diffusion.score_models.base import ScoreModel
from mattergen.property_embeddings import (
ChemicalSystemMultiHotEmbedding,
get_property_embeddings,
get_use_unconditional_embedding,
)
BatchTransform = Callable[[ChemGraph], ChemGraph]
def atomic_numbers_to_mask(atomic_numbers: torch.LongTensor, max_atomic_num: int) -> torch.Tensor:
"""Convert atomic numbers to a mask.
Args:
atomic_numbers (torch.LongTensor): One-based atomic numbers of shape (batch_size, )
Returns:
torch.Tensor: Mask of shape (batch_size, num_classes)
"""
k_hot_mask = torch.eye(max_atomic_num, device=atomic_numbers.device)[atomic_numbers - 1]
return k_hot_mask
def mask_logits(logits: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
"""Mask logits by setting the logits for masked items to -inf.
Args:
logits (torch.Tensor): Logits of shape (batch_size, num_classes)
mask (torch.Tensor): Mask of shape (batch_size, num_classes). Values with zero are masked.
Returns:
torch.Tensor: Masked logits
"""
return logits + (1 - mask) * -1e10
def mask_disallowed_elements(
logits: torch.FloatTensor,
x: ChemGraph | None = None,
batch_idx: torch.LongTensor | None = None,
predictions_are_zero_based: bool = True,
):
"""
Mask out atom types that are disallowed in general,
as well as potentially all elements not in the chemical system we condition on.
Args:
logits (torch.Tensor): Logits of shape (batch_size, num_classes)
x (ChemGraph)
batch_idx (torch.LongTensor, optional): Batch indices. Defaults to None. Must be provided if condition is not None.
predictions_are_zero_based (bool, optional): Whether the logits are zero-based. Defaults to True. Basically, if we're using D3PM,
the logits are zero-based (model predicts atomic number index)
"""
# First, mask out generally undesired elements
# (1, num_selected_elements)
selected_atomic_numbers = torch.tensor(SELECTED_ATOMIC_NUMBERS, device=logits.device)
predictions_are_one_based = not predictions_are_zero_based
# (num_atoms, num_classes)
one_hot_selected_elements = atomic_numbers_to_mask(
atomic_numbers=selected_atomic_numbers + int(predictions_are_one_based),
max_atomic_num=logits.shape[1],
)
# (1, num_classes)
k_hot_mask = one_hot_selected_elements.sum(0)[None]
# Set the logits for disallowed elements to -inf
logits = mask_logits(logits=logits, mask=k_hot_mask)
# Optionally, also mask out elements that are not in the chemical system we condition on
if x is not None and "chemical_system" in x and x["chemical_system"] is not None:
try:
# torch.BoolTensor, shape (batch_size, 1) -- do not mask logits when we use an unconditional embedding
do_not_mask_atom_logits = get_use_unconditional_embedding(
batch=x, cond_field="chemical_system"
)
except KeyError:
# if no mask provided to use conditional/unconditional labels then do not mask logits
do_not_mask_atom_logits = torch.ones(
(len(x["chemical_system"]), 1), dtype=torch.bool, device=x["num_atoms"].device
)
# mypy
assert batch_idx is not None, "batch_idx must be provided if condition is not None"
# Only mask atom types where the condition is not masked
# A 1 means that we do not alter the logit, a 0 means that we change the logit to -inf
# keep_logits.shape=(Nbatch, MAX_ATOMIC_NUM+1)
# 1 = keep logit, 0 = set logit to -inf, shape = (Nbatch, MAX_ATOMIC_NUM+1)
keep_all_logits = torch.ones((len(x["chemical_system"]), 1), device=x["num_atoms"].device)
# torch.Tensor, shape=(Nbatch,MAX_ATOMIC_NUM+1) -- 1s where elements are present in chemical system condition, 0 elsewhere
multi_hot_chemical_system = ChemicalSystemMultiHotEmbedding.sequences_to_multi_hot(
x=ChemicalSystemMultiHotEmbedding.convert_to_list_of_str(x=x["chemical_system"]),
device=x["num_atoms"].device,
)
keep_logits = torch.where(
do_not_mask_atom_logits,
keep_all_logits,
multi_hot_chemical_system,
)
# This is converting the 1-based chemical system condition to a 0-based
# condition -- we're doing it on the multi-hot representation of the
# chemical system, so we need to shift the indices by one.
if predictions_are_zero_based:
keep_logits = keep_logits[:, 1:]
# If we use mask diffusion, logits is shape [batch_size, MAX_ATOMIC_NUM + 1]
# instead of [batch_size, MAX_ATOMIC_NUM], so we have to add one dummy column
if keep_logits.shape[1] == logits.shape[1] - 1:
keep_logits = torch.cat([keep_logits, torch.zeros_like(keep_logits[:, :1])], dim=-1)
# Mask out all logits outside the chemical system we condition on
logits = mask_logits(logits, keep_logits[batch_idx])
return logits
def get_chemgraph_from_denoiser_output(
pred_atom_types: torch.Tensor,
pred_lattice_eps: torch.Tensor,
pred_cart_pos_eps: torch.Tensor,
training: bool,
element_mask_func: Callable | None,
x_input: ChemGraph,
) -> ChemGraph:
"""
Convert raw denoiser output to ChemGraph and optionally apply masking to element logits.
Keyword arguments
-----------------
pred_atom_atoms: predicted logits for atom types
pred_lattice_eps: predicted lattice noise
pred_cart_pos_eps: predicted cartesian position noise
training: whether or not the model is in training mode - logit masking is only applied when sampling
element_mask_func: when not training, a function can be applied to mask logits for certain atom types
x_input: the nosiy state input to the score model, contains the lattice to convert cartesisan to fractional noise.
"""
if not training and element_mask_func:
# when sampling we may want to mask logits for atom types depending on info in x['chemical_system'] and x['chemical_system_MASK']
pred_atom_types = element_mask_func(
logits=pred_atom_types,
x=x_input,
batch_idx=x_input.get_batch_idx("pos"),
)
replace_dict = dict(
# convert from cartesian to fractional coordinate score
pos=(
x_input["cell"].inverse().transpose(1, 2)[x_input.get_batch_idx("pos")]
@ pred_cart_pos_eps.unsqueeze(-1)
).squeeze(-1),
cell=pred_lattice_eps,
atomic_numbers=pred_atom_types,
)
return x_input.replace(
**replace_dict,
)
class GemNetTDenoiser(ScoreModel):
"""Denoiser"""
def __init__(
self,
gemnet: nn.Module,
hidden_dim: int = 512,
denoise_atom_types: bool = True,
atom_type_diffusion: str = [
"mask",
"uniform",
][0],
property_embeddings: torch.nn.ModuleDict | None = None,
property_embeddings_adapt: torch.nn.ModuleDict | None = None,
element_mask_func: Callable | None = None,
**kwargs,
):
"""Construct a GemNetTDenoiser object.
Args:
gemnet: a GNN module
hidden_dim (int, optional): Number of hidden dimensions in the GemNet. Defaults to 128.
denoise_atom_types (bool, optional): Whether to denoise the atom types. Defaults to False.
atom_type_diffusion (str, optional): Which type of atom type diffusion to use. Defaults to "mask".
condition_on (Optional[List[str]], optional): Which aspects of the data to condition on. Strings must be in ["property", "chemical_system"]. If None (default), condition on ["chemical_system"].
"""
super(GemNetTDenoiser, self).__init__()
self.gemnet = gemnet
self.noise_level_encoding = NoiseLevelEncoding(hidden_dim)
self.hidden_dim = hidden_dim
self.denoise_atom_types = denoise_atom_types
self.atom_type_diffusion = atom_type_diffusion
# torch.nn.ModuleDict: Dict[PropertyName, PropertyEmbedding]
self.property_embeddings = torch.nn.ModuleDict(property_embeddings or {})
with_mask_type = self.denoise_atom_types and "mask" in self.atom_type_diffusion
self.fc_atom = nn.Linear(hidden_dim, MAX_ATOMIC_NUM + int(with_mask_type))
self.element_mask_func = element_mask_func
def forward(self, x: ChemGraph, t: torch.Tensor) -> ChemGraph:
"""
args:
x: tuple containing:
frac_coords: (N_atoms, 3)
lattice: (N_cryst, 3, 3)
atom_types: (N_atoms, ), need to use atomic number e.g. H = 1 or ion state
num_atoms: (N_cryst,)
batch: (N_atoms,)
t: (N_cryst,): timestep per crystal
returns:
tuple of:
predicted epsilon: (N_atoms, 3)
lattice update: (N_crystals, 3, 3)
predicted atom types: (N_atoms, MAX_ATOMIC_NUM)
"""
(frac_coords, lattice, atom_types, num_atoms, batch) = (
x["pos"],
x["cell"],
x["atomic_numbers"],
x["num_atoms"],
x.get_batch_idx("pos"),
)
# (num_atoms, hidden_dim) (num_crysts, 3)
t_enc = self.noise_level_encoding(t).to(lattice.device)
z_per_crystal = t_enc
# evaluate property embedding values
property_embedding_values = get_property_embeddings(
batch=x, property_embeddings=self.property_embeddings
)
if len(property_embedding_values) > 0:
z_per_crystal = torch.cat([z_per_crystal, property_embedding_values], dim=-1)
output = self.gemnet(
z=z_per_crystal,
frac_coords=frac_coords,
atom_types=atom_types,
num_atoms=num_atoms,
batch=batch,
lengths=None,
angles=None,
lattice=lattice,
# we construct the graph on the fly, hence pass None for these:
edge_index=None,
to_jimages=None,
num_bonds=None,
)
pred_atom_types = self.fc_atom(output.node_embeddings)
return get_chemgraph_from_denoiser_output(
pred_atom_types=pred_atom_types,
pred_lattice_eps=output.stress,
pred_cart_pos_eps=output.forces,
training=self.training,
element_mask_func=self.element_mask_func,
x_input=x,
)
@property
def cond_fields_model_was_trained_on(self) -> list[PropertySourceId]:
"""
We adopt the convention that all property embeddings are stored in torch.nn.ModuleDicts of
name property_embeddings or property_embeddings_adapt in the case of a fine tuned model.
This function returns the list of all field names that a given score model was trained to
condition on.
"""
return list(self.property_embeddings)
|