File size: 31,929 Bytes
cfeea40 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 |
# Copyright (c) 2022 The Google Research Authors.
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# Adapted from https://github.com/google-research/google-research/blob/master/d3pm/text/diffusion.py
# Siginificant changes:
# * adapt code style/ formatting
# * Jax -> PyTorch
# * Remove Diffusion types that are not used by MatterGen
# ORIGINAL LICENSE NOTICE:
# Copyright 2022 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Diffusions for training and noise scheduling."""
import abc
import dataclasses
from typing import Any, Callable, Dict, Optional, Union
import torch
import torch.nn.functional as F
from torch.distributions import Categorical
class DiffusionSchedule:
"""A wrapper around a simple schedule function."""
def __init__(self, schedule_fn, num_steps, is_constant=False):
self._schedule_fn = schedule_fn
self.num_steps = num_steps
self.is_constant = is_constant
def __call__(self, step):
return self._schedule_fn(step)
def __repr__(self):
return f"DiffusionSchedule(steps: {self.num_steps}, is_constant: {self.is_constant})"
class DiscreteDiffusionBase(abc.ABC):
"""Base class for all matrix-noise schedules."""
num_steps: int
dim: int
precision: Any = torch.float32
@abc.abstractmethod
def stationary_probs(self, shape):
"""Returns probs for the stationary distribution."""
@abc.abstractmethod
def sample_stationary(self, shape):
"""Draws a sample from the stationary distribution (q(x_T))."""
@property
def has_state(self):
"""Indicates if the diffusion has state which needs to be set/updated."""
return False
def set_state(self, state):
pass
def reset_state(self):
pass
def update_state(self, state):
pass
def sample_t(self, shape=(1,)):
"""Samples batches of time steps to use."""
num_steps = self.num_steps
t = torch.randint(shape, minval=0, maxval=num_steps)
return t
@abc.abstractmethod
def get_qt_given_q0(self, q0, t, return_logits=False, make_one_hot=False, epsilon=1e-20):
"""Get q(x_t), the n-step posterior.
For example, for t = 0, it returns q0 unchanged.
Args:
q0: an array of floats specifying a distribution over p(x_0).
t: t in q(x_t | x_0).
return_logits: if True, return the output logits
make_one_hot: if True, will convert q0 to floats if needed.
epsilon: a small number to normalize logits conversion with, if needed.
Returns:
q(x_t | x_0).
"""
@abc.abstractmethod
def sample_and_compute_posterior_q(
self,
x_0,
t,
samples=None,
transition_probs=None,
return_logits=True,
return_transition_probs=False,
transition_probs_in_logits=True,
make_one_hot=True,
epsilon=1e-20,
step_size=1,
):
"""Samples from q(x_{t+1} | x_0), then computes q(x_t | x_{t+1}, x_0).
Args:
x_0: an array containing x_0 samples. These are expected to be integral
unless make_one_hot is False (in which case probabilities can be
provided).
t: the timestep to compute (as an int or integer array with shape that
matches x_0.
samples: if not None, use these samples to compute the posterior.
transition_probs: precomputed transition probabilities.
return_logits: if True, returns the (noisy) log of the probabilities.
return_transition_probs: if true, returns the transition probs as well.
transition_probs_in_logits: include transition probs in logits.
make_one_hot: if True, will convert the input to a one_hot vector.
epsilon: a small amount of noise to add to logits if needed.
step_size: if provided, computes q(x_{t + step_size} | x_0), etc. This is
used to sample fewer steps for ELBO evaluation on a longer trained
model.
Returns:
a list of samples with the same shape as x_0 and the associated posterior
probabilities (or logits).
"""
class DiscreteDiffusionMatrixBase(DiscreteDiffusionBase):
"""Base class for all matrix-noise schedulers."""
num_steps: int
dim: int
precision: Any = torch.float32
def get(self, t):
"""Returns the transition matrix q(x_{t+1} | x_t)."""
raise NotImplementedError
def custom_product_fn(self, t):
"""Returns q(x_t | x_0), the product of the first t matrices."""
raise NotImplementedError
def supports_efficient_get(self):
"""Returns true if get() is implemented/efficient."""
return False
def supports_efficient_inference(self):
"""Returns true if custom_product_fn is implemented.
The ontology of efficient_get and efficient_inference is this:
* if efficient_inference is enabled, it is used to return q(x_t | x_0)
without computing expensive products.
* if efficient_get is enabled, get(...) is used to get the posterior of
q(x_{t-1} | x_t, x_0). If not, get_q_given_q0 is called to get
q(x_{t+1} | x_0), and qt_reverse is called to get the q(x_{t+1} | x_t).
"""
return False
def qt_reverse(self, qt_plus_1, t, return_logits=False, make_one_hot=False, epsilon=1e-20):
"""Get q(x_{t+1} | x_t), for each possible value of x_t. Thus, the rows of the output do not sum to 1.
Args:
qt_plus_1: an array of floats specifying a distribution over q(x_{t+1} | x_0).
t: t in q(x_{t+1} | x_t).
return_logits: if True, return the output logits
make_one_hot: if True, will convert q(x_{t+1}) to floats if needed.
epsilon: a small number to normalize logits conversion with, if needed.
Returns:
q(x_{t+1} | x_t), shape [num_samples, num_classes].
"""
raise NotImplementedError
def get_qt_matrix(self, t):
"""Returns the matrix Q = q(x_t | x_0) materialized over all x_0."""
if self.supports_efficient_inference():
return self.custom_product_fn(t)
# otherwise, multiply by the ith matrix in a for-loop.
def product_fn(i, state):
return torch.matmul(self.get(torch.tensor(i)), state)
val = torch.eye(self.dim, device=t.device)
for i in range(0, t):
val = product_fn(i, val)
return val
def get_qt_given_q0(self, q0, t, return_logits=False, make_one_hot=False, epsilon=1e-20):
"""Get q(x_t), the n-step posterior.
For example, for t = 0, it returns q0 unchanged.
Args:
q0: an array of floats specifying a distribution over p(x_0).
t: t in q(x_t | x_0).
return_logits: if True, return the output logits
make_one_hot: if True, will convert q0 to floats if needed.
epsilon: a small number to normalize logits conversion with, if needed.
Returns:
q(x_t | x_0).
"""
if make_one_hot:
assert q0.dtype == torch.long or q0.dtype == torch.int32
q0 = torch.eye(self.dim, device=q0.device)[q0]
assert q0.dtype == torch.float32
# if efficient inference is supported, just return those matrices.
if self.supports_efficient_inference():
prob_at_time_t = torch.einsum("bij,bj->bi", self.get_qt_matrix(t).to(q0.dtype), q0)
if return_logits:
return torch.log(prob_at_time_t + epsilon)
else:
return prob_at_time_t
@dataclasses.dataclass
class ScanState:
final_time: int # target time
q: Any
def product_fn(state, current_time):
cond = current_time < state.final_time
transition = self.get(current_time)
q_t_plus_1 = torch.einsum("ij,sj->si", transition, state.q)
new_q = torch.where(cond[:, None], q_t_plus_1, state.q)
return ScanState(final_time=state.final_time, q=new_q), None
init_val = ScanState(final_time=t, q=q0)
carry = init_val
idx = torch.arange(self.num_steps, device=q0.device)
for i in idx:
carry, _ = product_fn(carry, i)
final_state = carry
prob_at_time_t = final_state.q
if return_logits:
return torch.log(prob_at_time_t + epsilon)
else:
return prob_at_time_t
def sample_and_compute_posterior_q(
self,
x_0,
t,
samples=None,
transition_probs=None,
return_logits=True,
return_transition_probs=False,
transition_probs_in_logits=True,
make_one_hot=True,
epsilon=1e-20,
step_size=1,
):
"""Samples from q(x_{t+1} | x_0), then computes q(x_t | x_{t+1}, x_0).
Args:
x_0: an array containing x_0 samples. These are expected to be integral
unless make_one_hot is False (in which case probabilities can be
provided).
t: the timestep to compute (as an int or integer array with shape that
matches x_0.
samples: if not None, use these samples to compute the posterior.
transition_probs: precomputed transition probabilities.
return_logits: if True, returns the (noisy) log of the probabilities.
return_transition_probs: if true, returns the transition probs as well.
transition_probs_in_logits: include transition probs in logits.
make_one_hot: if True, will convert the input to a one_hot vector.
epsilon: a small amount of noise to add to logits if needed.
step_size: if provided, computes q(x_{t + step_size} | x_0), etc. This is
used to sample fewer steps for ELBO evaluation on a longer trained
model.
Returns:
a list of samples with the same shape as x_0 and the associated posterior
probabilities (or logits).
"""
dim = self.dim
device = x_0.device
# t = torch.tensor(t, device=x_0.device)
if make_one_hot:
assert x_0.dtype in [torch.long, torch.int32]
x_0 = torch.eye(dim, device=device)[x_0].reshape(x_0.shape + (dim,))
assert x_0.dtype == torch.float32
assert t.dtype in [torch.long, torch.int32]
prob_at_time_t = self.get_qt_given_q0(q0=x_0, t=t)
# most methods support efficiently returning the t-th transition matrix
# if so, we use that. Otherwise we recompute the t+1th probability.
if self.supports_efficient_get():
if step_size > 1:
transition_matrix = torch.eye(self.dim, device=x_0.device)
for i in range(step_size):
transition_matrix = self.get(t + i) @ transition_matrix
else:
transition_matrix = self.get(t)
prob_at_time_t_plus_one = torch.einsum(
"bij,bj->bi",
transition_matrix,
prob_at_time_t,
)
else:
prob_at_time_t_plus_one = self.get_qt_given_q0(q0=x_0, t=t + step_size)
if samples is None and transition_probs is not None:
raise ValueError("samples were not provided but transition_probs were.")
# if samples are provided, we use those. otherwise, we sample more.
if samples is None:
logits = torch.log(prob_at_time_t_plus_one + epsilon)
samples = Categorical(logits=logits).sample()
# we can optionally provide transition probs from another call to this
# function. If not, we recompute this. For most methods, we can reuse the
# transition matrix. If we didn't compute it, our method must support
# qt_reverse which usually computes efficient backwards VJPs.
if transition_probs is None:
if self.supports_efficient_get():
transition_probs = transition_matrix[range(samples.shape[0]), samples]
else:
if step_size > 1:
transition_probs = torch.eye(self.dim, device=samples.device)[samples]
for i in range(step_size):
transition_probs = self.qt_reverse(
qt_plus_1=transition_probs, make_one_hot=False, t=t + step_size - 1 - i
)
else:
# Computes q(x_{t+1} | x_t), i.e., for each possible x_t, what is the probability of transitioning to each x_{t+1}.
# Thus, these probabilities do not sum to 1 per row.
# If we don't return logits, transition_probs will be used to compute q(x_t | x_{t+1}).
# Otherwise, we return the logits of q(x_t | x_{t+1}) = q(x_{t+1} | x_t) * q(x_t | x_0), i.e., omit normalization by q(x_{t+1} | x_0).
# Shape [batch_size, num_classes]
transition_probs = self.qt_reverse(qt_plus_1=samples, make_one_hot=True, t=t)
if not transition_probs_in_logits and not return_logits:
raise ValueError(
"Cannot exclude transition probs from logits if return_logits is false."
)
if return_logits:
# for numerical stability, we can compute log(a*b) = log(a) + log(b)
posterior_logits = torch.log(prob_at_time_t + epsilon)
if transition_probs_in_logits:
posterior_logits += torch.log(transition_probs + epsilon)
if return_transition_probs:
return posterior_logits, samples, transition_probs
else:
return posterior_logits, samples
else:
# here we hope this never actually sums to zero. There's a chance
# this will produce NaN gradients, but that's OK because they'll be
# skipped.
posterior = transition_probs * prob_at_time_t
denominator = torch.sum(posterior, dim=-1, keepdims=True)
posterior = posterior / denominator
if return_transition_probs:
return posterior, samples, transition_probs
else:
return posterior, samples
class MaskDiffusion(DiscreteDiffusionMatrixBase):
"""A simple schedule that diffuses away from the identity matrix."""
def __init__(self, dim, schedule, precision=torch.float32, use_fast_inference=True):
"""A simple scheduler for masking policies.
Args:
dim: int, the dimensionality of the state space.
schedule: a DiffusionSchedule object for scheduling rates.
precision: matmul precision.
use_fast_inference: if False, uses a slower, brute force approach.
"""
self.num_steps = schedule.num_steps
self.schedule = schedule
self.use_fast_inference = use_fast_inference
self.precision = precision
self.dim = dim # allow mask
self.state = self._create_state()
def _create_state(self):
"""Initializes values used by the get function."""
betas = torch.cat([torch.tensor([0.0]), self.schedule(torch.arange(self.num_steps))]).to(
torch.float64
)
alphas = 1 - betas
state = torch.cumprod(alphas, dim=0)
state[-1] = 0.0
return state.float()
def supports_efficient_inference(self):
return self.use_fast_inference
def stationary_probs(self, shape):
"""Stationary distribution is one-hot at mask token."""
sample = torch.full(shape, self.dim - 1)
probs = torch.eye(self.dim, device=sample.device)[sample]
return probs
def sample_stationary(self, shape):
"""Stationary distribution is one-hot at mask token."""
return torch.full(shape, self.dim - 1)
def custom_product_fn(self, t):
"""Returns product of first n matrices. Only supported for beta constant."""
dim = self.dim
if self.schedule.is_constant:
beta = self.schedule(0)
return (1 - beta) ** t * torch.eye(dim) + (1 - (1 - beta) ** t) * self._get_mask()
else:
p = self.state[t]
return p * torch.eye(dim) + (1 - p) * self._get_mask()
def _get_mask(self):
dim = self.dim
return torch.ones((dim, dim)) * (torch.arange(0, dim)[:, None] == (dim - 1)).to(
torch.float32
)
def get(self, t):
_t = t if len(t.shape) == 1 else t[None]
beta = self.schedule(_t)
dim = self.dim
ret = (1 - beta)[:, None, None] * torch.eye(dim, device=_t.device)[None] + beta[
:, None, None
] * self._get_mask().to(_t.device)[None]
return ret if len(t.shape) == 1 else ret.squeeze(0)
def qt_reverse(self, qt_plus_1, t, return_logits=False, make_one_hot=False, epsilon=1e-20):
"""Get q(x_{t+1} | x_t), for each possible value of x_t. Thus, the rows of the output do not sum to 1.
Args:
qt_plus_1: an array of floats specifying a distribution over q(x_{t+1} | x_0).
t: t in q(x_{t+1} | x_t).
return_logits: if True, return the output logits
make_one_hot: if True, will convert q(x_{t+1}) to floats if needed.
epsilon: a small number to normalize logits conversion with, if needed.
Returns:
q(x_{t+1} | x_t), shape [num_samples, num_classes].
"""
if make_one_hot:
assert qt_plus_1.dtype in [torch.long, torch.int32]
qt_plus_1 = torch.eye(self.dim, device=qt_plus_1.device)[qt_plus_1]
assert qt_plus_1.dtype == torch.float32
beta = self.schedule(t)
# q(x_{t+1} | x_t) = (1 - beta) if x_t = x_{t+1} != mask type
# else: beta if x_t != mask type else 1. (beta is the probability of transitioning to the absorbing state at t).
# I.e., if x_{t+1} is in some non-masked state S, then the probability of transitioning from S in t to S in t+1 is (1 - beta).
# Else, if x_{t+1} is in the masked state, then the probability of transitioning from a non-masked state S in t to the masked state in t+1 is beta,
# and the probability of transitioning from the masked state to itself is 1.
non_mask_prob = (1 - beta)[:, None] * qt_plus_1[:, :-1] + beta[:, None] * qt_plus_1[:, -1:]
prob_at_time_t = (
torch.eye(self.dim, device=qt_plus_1.device)[self.dim - 1][None] * qt_plus_1[:, -1:]
)
prob_at_time_t[:, :-1] = non_mask_prob
if return_logits:
return torch.log(prob_at_time_t + epsilon)
else:
return prob_at_time_t
def get_qt_given_q0(self, q0, t, return_logits=False, make_one_hot=False, epsilon=1e-20):
"""Get q(x_t), the n-step posterior.
Can do efficiently for masks.
For example, for t = 0, it returns q0 unchanged.
Args:
q0: an array of floats specifying a distribution over p(x_0).
t: t in q(x_t | x_0).
return_logits: if True, return the output logits
make_one_hot: if True, will convert q0 to floats if needed.
epsilon: a small number to normalize logits conversion with, if needed.
Returns:
q(x_t | x_0).
"""
if not self.supports_efficient_inference():
return super().get_qt_given_q0(
q0, t, return_logits=return_logits, make_one_hot=make_one_hot, epsilon=epsilon
)
if make_one_hot:
assert q0.dtype in [torch.int32, torch.long]
q0 = torch.eye(self.dim, device=q0.device)[q0]
assert q0.dtype == torch.float32
assert len(q0.shape) == 2
# p is probability of staying the same. (1 - p) is prob of masking.
p = self.state.to(q0.device)[t]
non_mask_prob = p[:, None] * q0[:, :-1]
mask_prob = 1 - non_mask_prob.sum(-1)
prob_at_time_t = (
mask_prob[:, None] * torch.eye(self.dim, device=q0.device)[self.dim - 1][None]
)
prob_at_time_t[:, :-1] = non_mask_prob
prob_at_time_t = torch.where(t[:, None] == 0, q0, prob_at_time_t)
if return_logits:
return torch.log(prob_at_time_t + epsilon)
else:
return prob_at_time_t
def supports_efficient_get(self):
return not self.use_fast_inference
def create_discrete_diffusion_schedule(
kind="linear",
beta_min=1e-3,
beta_max=1e-1,
num_steps=100,
scale=1.0,
):
"""Creates a callable schedule object to use for diffusion rates.
Args:
kind: str, one of 'standard', 'linear', 'cosine', 'mutual_information'. If
standard, performs standard binomial diffusion taken from Sohl-Dicksteein
et al, ignoring betas. Otherwise, linear schedule between beta_min and
beta_max.
beta_min: the minimum beta. Ignored if kind == standard.
beta_max: the maximum beta.
num_steps: int, the number of steps to take.
scale: for standard schedule, rescales num_steps by this amount.
Returns:
a DiffusionSchedule object.
"""
assert beta_min <= beta_max
assert num_steps > 0
assert scale >= 1
if kind == "standard":
def schedule_fn(step: Union[int, torch.Tensor]):
return 1 / (scale * num_steps - step)
return DiffusionSchedule(schedule_fn, num_steps, is_constant=False)
elif kind == "linear":
is_constant = beta_min == beta_max
linspace = torch.linspace(beta_min, beta_max, num_steps)
def schedule_fn(step: Union[int, torch.Tensor]):
return linspace[step]
return DiffusionSchedule(schedule_fn, num_steps, is_constant=is_constant)
elif kind == "cosine":
s = 0.008
def cosine_fn(step: torch.Tensor):
return torch.cos((step / num_steps + s) / (1 + s) * torch.pi / 2)
def schedule_fn(step: Union[int, torch.Tensor]):
if isinstance(step, int):
step = torch.tensor(step)
return torch.clamp(1 - (cosine_fn(step + 1) / cosine_fn(step)), 0, 0.999)
return DiffusionSchedule(schedule_fn, num_steps, is_constant=False)
else:
raise ValueError(f"kind {kind} is not supported.")
def p_forward(
denoise_fn,
x_t,
t,
diffusion,
predict_x0=True,
return_x0=False,
return_logits=False,
special_case_x0=False,
transition_probs=None,
transition_probs_in_logits=True,
maximum_likelihood=False,
epsilon=1e-20,
step_size=1,
):
"""Returns probabilities from the reverse process p(x_{t-1} | x_t).
Args:
denoise_fn: the reverse process. Must support embed, call, and attend.
x_t: the current value of x_t to condition on.
t: the timestep t.
diffusion: the Diffusion object to use for noise.
predict_x0: if True, assumes the model output corresponds to its prediction
for p(x_0 | x_t). Otherwise assumes model predicts p(x_{t-1} | x_t).
return_x0: if True, will return probs for x_0 as well as x_{t-1}.
return_logits: if True, will return logits instead of probabilities.
special_case_x0: if True, will directly predict x0 instead of using the
forward process probabilities.
transition_probs: if provided, q(x_{t+1} | x_t) probs to reuse.
transition_probs_in_logits: if False, will ignore transition probs in logits
(only allowed if return_logits is True). This is because this term is
independent of theta.
maximum_likelihood: if true, will draw the most likely x0 before applying
the forward process.
epsilon: a small number.
step_size: step size to compute posterior from.
Returns:
probabilities for q(x_{t-1} | x_t) (and probabilities for x0 if predict_x0
is True)
"""
assert not (step_size > 1 and not predict_x0)
logits = denoise_fn(targets=x_t, timestep=t)
probs = logits.softmax(dim=-1)
if not predict_x0:
retval = logits if return_logits else probs
if return_x0:
return retval, None
else:
return retval
if maximum_likelihood:
probs = probs.argmax(-1)
# we use this to compute p(x_{t-1} | x_t) = sum_x0 q(x_{t-1} | x_t, x_0)
# p(x_0 | x_t).
qt_probs, _ = diffusion.sample_and_compute_posterior_q(
x_0=probs,
t=t - step_size,
make_one_hot=maximum_likelihood,
return_logits=return_logits,
transition_probs_in_logits=transition_probs_in_logits,
transition_probs=transition_probs,
samples=x_t,
epsilon=epsilon,
step_size=step_size,
)
retval_x0 = logits if return_logits else probs
retval = qt_probs
# we can special case t = 1 to just use the raw logits outputs.
mask = (t == step_size) & special_case_x0
retval = mask[:, None] * retval_x0 + (mask.logical_not())[:, None] * retval
if return_x0:
return retval, retval_x0
else:
return retval
def q_sample(x_start, t, diffusion, return_logits=False):
"""Draws a sample from the posterior q(x_t | x_start)."""
assert x_start.dtype in [torch.int32, torch.long]
dim = diffusion.dim
x_start = torch.eye(dim, device=x_start.device)[x_start]
logits = diffusion.get_qt_given_q0(q0=x_start, t=t, return_logits=True)
sample = Categorical(logits=logits).sample()
if return_logits:
return sample, logits
return sample
def compute_prior_kl(x_start, diffusion, target_mask=None):
"""Computes KL divergence between q(x_T) and the true distribution."""
assert x_start.dtype in [torch.long, torch.int32]
num_steps = diffusion.num_steps
q_probs = diffusion.get_qt_given_q0(
q0=x_start,
t=torch.tensor(
[
num_steps,
],
device=x_start.device,
),
return_logits=False,
make_one_hot=True,
) # get end step
p_probs = diffusion.stationary_probs(q_probs.shape[:-1]).to(q_probs.device)
d1 = Categorical(probs=q_probs)
d2 = Categorical(probs=p_probs)
loss = torch.distributions.kl_divergence(d1, d2)
if target_mask is not None:
loss = (loss * target_mask).sum()
else:
loss = loss.sum()
return loss
def compute_kl_reverse_process(
x_start: torch.Tensor,
t: torch.Tensor,
*,
x_t_plus_1: Optional[torch.Tensor] = None,
diffusion: DiscreteDiffusionBase,
denoise_fn: Callable[[torch.Tensor, torch.Tensor], torch.Tensor],
predict_x0: bool = True,
log_space: bool = False,
label_smoothing: float = 0.0,
hybrid_lambda: float = 0.0,
use_cached_transition: bool = True,
target_mask: Optional[torch.Tensor] = None,
step_size: int = 1,
) -> Dict[str, torch.Tensor]:
"""Returns the KL for one term in the ELBO (time t) (loss L_t).
This assumes x_start is a sample from x_0, from which we draw samples from
q(x_t | x_0) and then compute q(x_{t-1} | x_t, x_0) following the LaTeX. This
is the KL divergence for terms L_1 through L_{T-1}.
Args:
x_start: a sample from p(data) (or q(x_0)).
t: the loss term to compute.
diffusion: the diffusion object to use.
denoise_fn: a functool.partial-ed version of the model_apply function which
takes a set of targets (x_t) and noise level and returns q(x_{t-1} | x_t,
x_0).
predict_x0: if True, will predict a distribution over x0 instead of x_{t-1}.
log_space: if True, will perform the loss calculations in log space.
label_smoothing: label smoothing for cross entropy.
hybrid_lambda: coefficient for hybrid cross-entropy loss.
use_cached_transition: if True, will reuse q(x_{t+1} | x_t) computation.
target_mask: mask for target sequence.
step_size: the step size over which the ELBO is computed.
Returns:
the KL divergence and denominator.
"""
assert x_start.dtype in [torch.int32, torch.long]
if step_size > 1 and not predict_x0:
raise ValueError("cannot skip steps when not predicting x0.")
# If x_t_plus_1 is None, sample from q(x_{t+1} | x_start). Otherwise use the provided samples for x_{t+1}.
# Then compute q(x_t | x_{t+1}, x_start)
# q_t and p_t can be logits or probs depending on log_space.
q_t, x_t_plus_1, transition_probs = diffusion.sample_and_compute_posterior_q(
x_0=x_start,
t=t,
return_logits=log_space,
return_transition_probs=True,
step_size=step_size,
samples=x_t_plus_1,
)
transition_probs = transition_probs if use_cached_transition else None
p_t = p_forward(
denoise_fn=denoise_fn,
x_t=x_t_plus_1,
t=t + step_size,
diffusion=diffusion,
predict_x0=predict_x0,
return_x0=predict_x0 and hybrid_lambda > 0.0,
return_logits=log_space,
transition_probs=transition_probs,
step_size=step_size,
)
hybrid_loss = torch.tensor(0.0, device=x_start.device)
if predict_x0 and hybrid_lambda > 0.0:
# p_t, p_0 are shape [num_atoms, ].
p_t, p_0 = p_t
if log_space:
# [num_atoms, ]
cross_entropy = F.cross_entropy(
input=p_0, target=x_start, label_smoothing=label_smoothing, reduction="none"
)
else:
# [num_atoms, ]
cross_entropy = F.cross_entropy(
input=(p_0 + 1e-7).log(),
target=x_start,
label_smoothing=label_smoothing,
reduction="none",
)
hybrid_loss = hybrid_lambda * cross_entropy
assert not q_t.isnan().any() and not p_t.isnan().any()
if log_space:
d1 = Categorical(logits=q_t)
d2 = Categorical(logits=p_t)
# [num_atoms, ]
kl = torch.distributions.kl_divergence(p=d1, q=d2)
# [num_atoms, ]
cross_entropy = F.cross_entropy(
input=p_t, target=x_start, label_smoothing=label_smoothing, reduction="none"
)
else:
d1 = Categorical(logits=(q_t + 1e-7).log())
d2 = Categorical(logits=(p_t + 1e-7).log())
# [num_atoms, ]
kl = torch.distributions.kl_divergence(p=d1, q=d2)
# [num_atoms, ]
cross_entropy = F.cross_entropy(
input=(p_t + 1e-7).log(),
target=x_start,
label_smoothing=label_smoothing,
reduction="none",
)
if target_mask is not None: # can be used for inpainting
kl = kl * target_mask
cross_entropy = cross_entropy * target_mask
hybrid_loss = hybrid_loss * target_mask
# [num_atoms, ]
mask = t == 0
base_loss = mask * cross_entropy + (mask.logical_not()) * kl
loss = base_loss + hybrid_loss
denominator = torch.tensor(1, device=x_start.device)
metrics_dict = {
"loss": loss,
"denominator": denominator,
"kl/hybrid_loss": hybrid_loss,
"kl/base_loss": base_loss,
"kl/cross_entropy_loss": cross_entropy,
"kl/t0_loss": mask * cross_entropy,
"kl/kl_loss": kl,
}
return metrics_dict
|