File size: 15,600 Bytes
cfeea40 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 |
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
import io
import os
from dataclasses import dataclass
from pathlib import Path
from zipfile import ZipFile
import ase.io
import hydra
import torch
from hydra.utils import instantiate
from omegaconf import DictConfig, OmegaConf
from pymatgen.core.structure import Structure
from pymatgen.io.ase import AseAtomsAdaptor
from tqdm import tqdm
from mattergen.common.data.chemgraph import ChemGraph
from mattergen.common.data.collate import collate
from mattergen.common.data.condition_factory import ConditionLoader
from mattergen.common.data.num_atoms_distribution import NUM_ATOMS_DISTRIBUTIONS
from mattergen.common.data.types import TargetProperty
from mattergen.common.utils.data_utils import lattice_matrix_to_params_torch
from mattergen.common.utils.eval_utils import (
MatterGenCheckpointInfo,
get_crystals_list,
load_model_diffusion,
make_structure,
save_structures,
)
from mattergen.common.utils.globals import DEFAULT_SAMPLING_CONFIG_PATH, get_device
from mattergen.diffusion.lightning_module import DiffusionLightningModule
from mattergen.diffusion.sampling.pc_sampler import PredictorCorrector
def draw_samples_from_sampler(
sampler: PredictorCorrector,
condition_loader: ConditionLoader,
properties_to_condition_on: TargetProperty | None = None,
output_path: Path | None = None,
cfg: DictConfig | None = None,
record_trajectories: bool = True,
) -> list[Structure]:
# Dict
properties_to_condition_on = properties_to_condition_on or {}
# we cannot conditional sample on something on which the model was not trained to condition on
assert all([key in sampler.diffusion_module.model.cond_fields_model_was_trained_on for key in properties_to_condition_on.keys()]) # type: ignore
all_samples_list = []
all_trajs_list = []
for conditioning_data, mask in tqdm(condition_loader, desc="Generating samples"):
# generate samples
if record_trajectories:
sample, mean, intermediate_samples = sampler.sample_with_record(conditioning_data, mask)
all_trajs_list.extend(list_of_time_steps_to_list_of_trajectories(intermediate_samples))
else:
sample, mean = sampler.sample(conditioning_data, mask)
all_samples_list.extend(mean.to_data_list())
all_samples = collate(all_samples_list)
assert isinstance(all_samples, ChemGraph)
lengths, angles = lattice_matrix_to_params_torch(all_samples.cell)
all_samples = all_samples.replace(lengths=lengths, angles=angles)
generated_strucs = structure_from_model_output(
all_samples["pos"].reshape(-1, 3),
all_samples["atomic_numbers"].reshape(-1),
all_samples["lengths"].reshape(-1, 3),
all_samples["angles"].reshape(-1, 3),
all_samples["num_atoms"].reshape(-1),
)
if output_path is not None:
assert cfg is not None
# Save structures to disk in both a extxyz file and a compressed zip file.
# do this before uploading to mongo in case there is an authentication error
save_structures(output_path, generated_strucs)
if record_trajectories:
dump_trajectories(
output_path=output_path,
all_trajs_list=all_trajs_list,
)
return generated_strucs
def list_of_time_steps_to_list_of_trajectories(
list_of_time_steps: list[ChemGraph],
) -> list[list[ChemGraph]]:
# Rearrange the shapes of the recorded intermediate samples and predictions
# We get a list of <num_timesteps> many ChemGraphBatches, each containing <batch_size>
# many ChemGraphs. Instead, we group all the ChemGraphs of the same trajectory together,
# i.e., we construct lists of <batch_size> many lists of
# <num_timesteps * (1 + num_corrector_steps)> many ChemGraphs.
# <num_timesteps * (1 + num_corrector_steps)> many lists of <batch_size> many ChemGraphs
data_lists_per_timesteps = [x.to_data_list() for x in list_of_time_steps]
# <batch_size> many lists of <num_timesteps * (1 + num_corrector_steps)> many ChemGraphs.
data_lists_per_sample = [
[data_lists_per_timesteps[ix_t][ix_traj] for ix_t in range(len(data_lists_per_timesteps))]
for ix_traj in range(len(data_lists_per_timesteps[0]))
]
return data_lists_per_sample
def dump_trajectories(
output_path: Path,
all_trajs_list: list[list[ChemGraph]],
) -> None:
try:
# We gather all trajectories in a single zip file as .extxyz files.
# This way we can view them easily after downloading.
with ZipFile(output_path / "generated_trajectories.zip", "w") as zip_obj:
for ix, traj in enumerate(all_trajs_list):
strucs = structures_from_trajectory(traj)
ase_atoms = [AseAtomsAdaptor.get_atoms(crystal) for crystal in strucs]
str_io = io.StringIO()
ase.io.write(str_io, ase_atoms, format="extxyz")
str_io.flush()
zip_obj.writestr(f"gen_{ix}.extxyz", str_io.getvalue())
except IOError as e:
print(f"Got error {e} writing the trajectory to disk.")
except ValueError as e:
print(f"Got error ValueError '{e}' writing the trajectory to disk.")
def structure_from_model_output(
frac_coords, atom_types, lengths, angles, num_atoms
) -> list[Structure]:
structures = [
make_structure(
lengths=d["lengths"],
angles=d["angles"],
atom_types=d["atom_types"],
frac_coords=d["frac_coords"],
)
for d in get_crystals_list(
frac_coords.cpu(),
atom_types.cpu(),
lengths.cpu(),
angles.cpu(),
num_atoms.cpu(),
)
]
return structures
def structures_from_trajectory(traj: list[ChemGraph]) -> list[Structure]:
all_strucs = []
for batch in traj:
cell = batch.cell
lengths, angles = lattice_matrix_to_params_torch(cell)
all_strucs.extend(
structure_from_model_output(
frac_coords=batch.pos,
atom_types=batch.atomic_numbers,
lengths=lengths,
angles=angles,
num_atoms=batch.num_atoms,
)
)
return all_strucs
@dataclass
class CrystalGenerator:
checkpoint_info: MatterGenCheckpointInfo
# These may be set at runtime
batch_size: int | None = None
num_batches: int | None = None
target_compositions_dict: list[dict[str, float]] | None = None
num_atoms_distribution: str = "ALEX_MP_20"
# Conditional generation
diffusion_guidance_factor: float = 0.0
properties_to_condition_on: TargetProperty | None = None
# Additional overrides, only has an effect when using a diffusion-codebase model
sampling_config_overrides: list[str] | None = None
# These only have an effect when using a legacy model
num_samples_per_batch: int = 1
niggli_reduction: bool = False
# Config path, if None will default to DEFAULT_SAMPLING_CONFIG_PATH
sampling_config_path: Path | None = None
sampling_config_name: str = "default"
record_trajectories: bool = True # store all intermediate samples by default
# These attributes are set when prepare() method is called.
_model: DiffusionLightningModule | None = None
_cfg: DictConfig | None = None
def __post_init__(self) -> None:
assert self.num_atoms_distribution in NUM_ATOMS_DISTRIBUTIONS, (
f"num_atoms_distribution must be one of {list(NUM_ATOMS_DISTRIBUTIONS.keys())}, "
f"but got {self.num_atoms_distribution}. To add your own distribution, "
"please add it to mattergen.common.data.num_atoms_distribution.NUM_ATOMS_DISTRIBUTIONS."
)
if len(self.target_compositions_dict) > 0:
assert self.cfg.lightning_module.diffusion_module.loss_fn.weights.get(
"atomic_numbers", 0.0
) == 0.0 and "atomic_numbers" not in self.cfg.lightning_module.diffusion_module.corruption.get(
"discrete_corruptions", {}
), "Input model appears to have been trained for crystal generation (i.e., with atom type denoising), not crystal structure prediction. Please use a model trained for crystal structure prediction instead."
sampling_cfg = self._load_sampling_config(
sampling_config_name=self.sampling_config_name,
sampling_config_overrides=self.sampling_config_overrides,
sampling_config_path=self.sampling_config_path,
)
if (
"atomic_numbers" in sampling_cfg.sampler_partial.predictor_partials
or "atomic_numbers" in sampling_cfg.sampler_partial.corrector_partials
):
raise ValueError(
"Incompatible sampling config for crystal structure prediction: found atomic_numbers in predictor_partials or corrector_partials. Use the 'csp' sampling config instead, e.g., via --sampling-config-name=csp."
)
@property
def model(self) -> DiffusionLightningModule:
self.prepare()
assert self._model is not None
return self._model
@property
def cfg(self) -> DictConfig:
self._cfg = self.checkpoint_info.config
assert self._cfg is not None
return self._cfg
@property
def num_structures_to_generate(self) -> int:
"""Returns the total number of structures to generate if `batch_size` and `num_batches` are specified at construction time;
otherwise, raises an AssertionError.
"""
assert self.batch_size is not None
assert self.num_batches is not None
return self.batch_size * self.num_batches
@property
def sampling_config(self) -> DictConfig:
"""Returns the sampling config if `batch_size` and `num_batches` are specified at construction time;
otherwise, raises an AssertionError.
"""
assert self.batch_size is not None
assert self.num_batches is not None
return self.load_sampling_config(
batch_size=self.batch_size,
num_batches=self.num_batches,
target_compositions_dict=self.target_compositions_dict,
)
def get_condition_loader(
self,
sampling_config: DictConfig,
target_compositions_dict: list[dict[str, float]] | None = None,
) -> ConditionLoader:
condition_loader_partial = instantiate(sampling_config.condition_loader_partial)
if not target_compositions_dict:
return condition_loader_partial(properties=self.properties_to_condition_on)
return condition_loader_partial(target_compositions_dict=target_compositions_dict)
def load_sampling_config(
self,
batch_size: int,
num_batches: int,
target_compositions_dict: list[dict[str, float]] | None = None,
) -> DictConfig:
"""
Create a sampling config from the given parameters.
We specify certain sampling hyperparameters via the sampling config that is loaded via hydra.
"""
if self.sampling_config_overrides is None:
sampling_config_overrides = []
else:
# avoid modifying the original list
sampling_config_overrides = self.sampling_config_overrides.copy()
if not target_compositions_dict:
# Default `condition_loader_partial` is
# mattergen.common.data.condition_factory.get_number_of_atoms_condition_loader
sampling_config_overrides += [
f"+condition_loader_partial.num_atoms_distribution={self.num_atoms_distribution}",
f"+condition_loader_partial.batch_size={batch_size}",
f"+condition_loader_partial.num_samples={num_batches * batch_size}",
f"sampler_partial.guidance_scale={self.diffusion_guidance_factor}",
]
else:
# `condition_loader_partial` for fixed atom type (crystal structure prediction)
num_structures_to_generate_per_composition = (
num_batches * batch_size // len(target_compositions_dict)
)
sampling_config_overrides += [
"condition_loader_partial._target_=mattergen.common.data.condition_factory.get_composition_data_loader",
f"+condition_loader_partial.num_structures_to_generate_per_composition={num_structures_to_generate_per_composition}",
f"+condition_loader_partial.batch_size={batch_size}",
]
return self._load_sampling_config(
sampling_config_overrides=sampling_config_overrides,
sampling_config_path=self.sampling_config_path,
sampling_config_name=self.sampling_config_name,
)
def _load_sampling_config(
self,
sampling_config_path: Path | None = None,
sampling_config_name: str = "default",
sampling_config_overrides: list[str] | None = None,
) -> DictConfig:
if sampling_config_path is None:
sampling_config_path = DEFAULT_SAMPLING_CONFIG_PATH
if sampling_config_overrides is None:
sampling_config_overrides = []
with hydra.initialize_config_dir(os.path.abspath(str(sampling_config_path))):
sampling_config = hydra.compose(
config_name=sampling_config_name, overrides=sampling_config_overrides
)
return sampling_config
def prepare(self) -> None:
"""Loads the model from checkpoint and prepares for generation."""
if self._model is not None:
return
model = load_model_diffusion(self.checkpoint_info)
model = model.to(get_device())
self._model = model
self._cfg = self.checkpoint_info.config
def generate(
self,
batch_size: int | None = None,
num_batches: int | None = None,
target_compositions_dict: list[dict[str, float]] | None = None,
output_dir: str = "outputs",
) -> list[Structure]:
# Prioritize the runtime provided batch_size, num_batches and target_compositions_dict
batch_size = batch_size or self.batch_size
num_batches = num_batches or self.num_batches
target_compositions_dict = target_compositions_dict or self.target_compositions_dict
assert batch_size is not None
assert num_batches is not None
# print config for debugging and reproducibility
print("\nModel config:")
print(OmegaConf.to_yaml(self.cfg, resolve=True))
sampling_config = self.load_sampling_config(
batch_size=batch_size,
num_batches=num_batches,
target_compositions_dict=target_compositions_dict,
)
print("\nSampling config:")
print(OmegaConf.to_yaml(sampling_config, resolve=True))
condition_loader = self.get_condition_loader(sampling_config, target_compositions_dict)
sampler_partial = instantiate(sampling_config.sampler_partial)
sampler = sampler_partial(pl_module=self.model)
generated_structures = draw_samples_from_sampler(
sampler=sampler,
condition_loader=condition_loader,
cfg=self.cfg,
output_path=Path(output_dir),
properties_to_condition_on=self.properties_to_condition_on,
record_trajectories=self.record_trajectories,
)
return generated_structures
|