File size: 15,600 Bytes
cfeea40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.

import io
import os
from dataclasses import dataclass
from pathlib import Path
from zipfile import ZipFile

import ase.io
import hydra
import torch
from hydra.utils import instantiate
from omegaconf import DictConfig, OmegaConf
from pymatgen.core.structure import Structure
from pymatgen.io.ase import AseAtomsAdaptor
from tqdm import tqdm

from mattergen.common.data.chemgraph import ChemGraph
from mattergen.common.data.collate import collate
from mattergen.common.data.condition_factory import ConditionLoader
from mattergen.common.data.num_atoms_distribution import NUM_ATOMS_DISTRIBUTIONS
from mattergen.common.data.types import TargetProperty
from mattergen.common.utils.data_utils import lattice_matrix_to_params_torch
from mattergen.common.utils.eval_utils import (
    MatterGenCheckpointInfo,
    get_crystals_list,
    load_model_diffusion,
    make_structure,
    save_structures,
)
from mattergen.common.utils.globals import DEFAULT_SAMPLING_CONFIG_PATH, get_device
from mattergen.diffusion.lightning_module import DiffusionLightningModule
from mattergen.diffusion.sampling.pc_sampler import PredictorCorrector


def draw_samples_from_sampler(
    sampler: PredictorCorrector,
    condition_loader: ConditionLoader,
    properties_to_condition_on: TargetProperty | None = None,
    output_path: Path | None = None,
    cfg: DictConfig | None = None,
    record_trajectories: bool = True,
) -> list[Structure]:

    # Dict
    properties_to_condition_on = properties_to_condition_on or {}

    # we cannot conditional sample on something on which the model was not trained to condition on
    assert all([key in sampler.diffusion_module.model.cond_fields_model_was_trained_on for key in properties_to_condition_on.keys()])  # type: ignore

    all_samples_list = []
    all_trajs_list = []
    for conditioning_data, mask in tqdm(condition_loader, desc="Generating samples"):

        # generate samples
        if record_trajectories:
            sample, mean, intermediate_samples = sampler.sample_with_record(conditioning_data, mask)
            all_trajs_list.extend(list_of_time_steps_to_list_of_trajectories(intermediate_samples))
        else:
            sample, mean = sampler.sample(conditioning_data, mask)
        all_samples_list.extend(mean.to_data_list())
    all_samples = collate(all_samples_list)
    assert isinstance(all_samples, ChemGraph)
    lengths, angles = lattice_matrix_to_params_torch(all_samples.cell)
    all_samples = all_samples.replace(lengths=lengths, angles=angles)

    generated_strucs = structure_from_model_output(
        all_samples["pos"].reshape(-1, 3),
        all_samples["atomic_numbers"].reshape(-1),
        all_samples["lengths"].reshape(-1, 3),
        all_samples["angles"].reshape(-1, 3),
        all_samples["num_atoms"].reshape(-1),
    )

    if output_path is not None:
        assert cfg is not None
        # Save structures to disk in both a extxyz file and a compressed zip file.
        # do this before uploading to mongo in case there is an authentication error
        save_structures(output_path, generated_strucs)

        if record_trajectories:
            dump_trajectories(
                output_path=output_path,
                all_trajs_list=all_trajs_list,
            )

    return generated_strucs


def list_of_time_steps_to_list_of_trajectories(
    list_of_time_steps: list[ChemGraph],
) -> list[list[ChemGraph]]:
    # Rearrange the shapes of the recorded intermediate samples and predictions
    # We get a list of <num_timesteps> many ChemGraphBatches, each containing <batch_size>
    # many ChemGraphs. Instead, we group all the ChemGraphs of the same trajectory together,
    # i.e., we construct lists of <batch_size> many lists of
    # <num_timesteps * (1 + num_corrector_steps)> many ChemGraphs.

    # <num_timesteps * (1 + num_corrector_steps)> many lists of <batch_size> many ChemGraphs
    data_lists_per_timesteps = [x.to_data_list() for x in list_of_time_steps]

    # <batch_size> many lists of <num_timesteps * (1 + num_corrector_steps)> many ChemGraphs.
    data_lists_per_sample = [
        [data_lists_per_timesteps[ix_t][ix_traj] for ix_t in range(len(data_lists_per_timesteps))]
        for ix_traj in range(len(data_lists_per_timesteps[0]))
    ]
    return data_lists_per_sample


def dump_trajectories(
    output_path: Path,
    all_trajs_list: list[list[ChemGraph]],
) -> None:
    try:
        # We gather all trajectories in a single zip file as .extxyz files.
        # This way we can view them easily after downloading.
        with ZipFile(output_path / "generated_trajectories.zip", "w") as zip_obj:
            for ix, traj in enumerate(all_trajs_list):
                strucs = structures_from_trajectory(traj)
                ase_atoms = [AseAtomsAdaptor.get_atoms(crystal) for crystal in strucs]
                str_io = io.StringIO()
                ase.io.write(str_io, ase_atoms, format="extxyz")
                str_io.flush()
                zip_obj.writestr(f"gen_{ix}.extxyz", str_io.getvalue())
    except IOError as e:
        print(f"Got error {e} writing the trajectory to disk.")
    except ValueError as e:
        print(f"Got error ValueError '{e}' writing the trajectory to disk.")


def structure_from_model_output(
    frac_coords, atom_types, lengths, angles, num_atoms
) -> list[Structure]:
    structures = [
        make_structure(
            lengths=d["lengths"],
            angles=d["angles"],
            atom_types=d["atom_types"],
            frac_coords=d["frac_coords"],
        )
        for d in get_crystals_list(
            frac_coords.cpu(),
            atom_types.cpu(),
            lengths.cpu(),
            angles.cpu(),
            num_atoms.cpu(),
        )
    ]
    return structures


def structures_from_trajectory(traj: list[ChemGraph]) -> list[Structure]:
    all_strucs = []
    for batch in traj:
        cell = batch.cell
        lengths, angles = lattice_matrix_to_params_torch(cell)
        all_strucs.extend(
            structure_from_model_output(
                frac_coords=batch.pos,
                atom_types=batch.atomic_numbers,
                lengths=lengths,
                angles=angles,
                num_atoms=batch.num_atoms,
            )
        )

    return all_strucs


@dataclass
class CrystalGenerator:
    checkpoint_info: MatterGenCheckpointInfo

    # These may be set at runtime
    batch_size: int | None = None
    num_batches: int | None = None
    target_compositions_dict: list[dict[str, float]] | None = None
    num_atoms_distribution: str = "ALEX_MP_20"

    # Conditional generation
    diffusion_guidance_factor: float = 0.0
    properties_to_condition_on: TargetProperty | None = None

    # Additional overrides, only has an effect when using a diffusion-codebase model
    sampling_config_overrides: list[str] | None = None

    # These only have an effect when using a legacy model
    num_samples_per_batch: int = 1
    niggli_reduction: bool = False

    # Config path, if None will default to DEFAULT_SAMPLING_CONFIG_PATH
    sampling_config_path: Path | None = None
    sampling_config_name: str = "default"

    record_trajectories: bool = True  # store all intermediate samples by default

    # These attributes are set when prepare() method is called.
    _model: DiffusionLightningModule | None = None
    _cfg: DictConfig | None = None

    def __post_init__(self) -> None:
        assert self.num_atoms_distribution in NUM_ATOMS_DISTRIBUTIONS, (
            f"num_atoms_distribution must be one of {list(NUM_ATOMS_DISTRIBUTIONS.keys())}, "
            f"but got {self.num_atoms_distribution}. To add your own distribution, "
            "please add it to mattergen.common.data.num_atoms_distribution.NUM_ATOMS_DISTRIBUTIONS."
        )
        if len(self.target_compositions_dict) > 0:
            assert self.cfg.lightning_module.diffusion_module.loss_fn.weights.get(
                "atomic_numbers", 0.0
            ) == 0.0 and "atomic_numbers" not in self.cfg.lightning_module.diffusion_module.corruption.get(
                "discrete_corruptions", {}
            ), "Input model appears to have been trained for crystal generation (i.e., with atom type denoising), not crystal structure prediction. Please use a model trained for crystal structure prediction instead."
            sampling_cfg = self._load_sampling_config(
                sampling_config_name=self.sampling_config_name,
                sampling_config_overrides=self.sampling_config_overrides,
                sampling_config_path=self.sampling_config_path,
            )
            if (
                "atomic_numbers" in sampling_cfg.sampler_partial.predictor_partials
                or "atomic_numbers" in sampling_cfg.sampler_partial.corrector_partials
            ):
                raise ValueError(
                    "Incompatible sampling config for crystal structure prediction: found atomic_numbers in predictor_partials or corrector_partials. Use the 'csp' sampling config instead, e.g., via --sampling-config-name=csp."
                )

    @property
    def model(self) -> DiffusionLightningModule:
        self.prepare()
        assert self._model is not None
        return self._model

    @property
    def cfg(self) -> DictConfig:
        self._cfg = self.checkpoint_info.config
        assert self._cfg is not None
        return self._cfg

    @property
    def num_structures_to_generate(self) -> int:
        """Returns the total number of structures to generate if `batch_size` and `num_batches` are specified at construction time;
        otherwise, raises an AssertionError.
        """
        assert self.batch_size is not None
        assert self.num_batches is not None
        return self.batch_size * self.num_batches

    @property
    def sampling_config(self) -> DictConfig:
        """Returns the sampling config if `batch_size` and `num_batches` are specified at construction time;
        otherwise, raises an AssertionError.
        """
        assert self.batch_size is not None
        assert self.num_batches is not None
        return self.load_sampling_config(
            batch_size=self.batch_size,
            num_batches=self.num_batches,
            target_compositions_dict=self.target_compositions_dict,
        )

    def get_condition_loader(
        self,
        sampling_config: DictConfig,
        target_compositions_dict: list[dict[str, float]] | None = None,
    ) -> ConditionLoader:
        condition_loader_partial = instantiate(sampling_config.condition_loader_partial)
        if not target_compositions_dict:
            return condition_loader_partial(properties=self.properties_to_condition_on)

        return condition_loader_partial(target_compositions_dict=target_compositions_dict)

    def load_sampling_config(
        self,
        batch_size: int,
        num_batches: int,
        target_compositions_dict: list[dict[str, float]] | None = None,
    ) -> DictConfig:
        """
        Create a sampling config from the given parameters.
        We specify certain sampling hyperparameters via the sampling config that is loaded via hydra.
        """
        if self.sampling_config_overrides is None:
            sampling_config_overrides = []
        else:
            # avoid modifying the original list
            sampling_config_overrides = self.sampling_config_overrides.copy()
        if not target_compositions_dict:
            # Default `condition_loader_partial` is
            # mattergen.common.data.condition_factory.get_number_of_atoms_condition_loader
            sampling_config_overrides += [
                f"+condition_loader_partial.num_atoms_distribution={self.num_atoms_distribution}",
                f"+condition_loader_partial.batch_size={batch_size}",
                f"+condition_loader_partial.num_samples={num_batches * batch_size}",
                f"sampler_partial.guidance_scale={self.diffusion_guidance_factor}",
            ]
        else:
            # `condition_loader_partial` for fixed atom type (crystal structure prediction)
            num_structures_to_generate_per_composition = (
                num_batches * batch_size // len(target_compositions_dict)
            )
            sampling_config_overrides += [
                "condition_loader_partial._target_=mattergen.common.data.condition_factory.get_composition_data_loader",
                f"+condition_loader_partial.num_structures_to_generate_per_composition={num_structures_to_generate_per_composition}",
                f"+condition_loader_partial.batch_size={batch_size}",
            ]
        return self._load_sampling_config(
            sampling_config_overrides=sampling_config_overrides,
            sampling_config_path=self.sampling_config_path,
            sampling_config_name=self.sampling_config_name,
        )

    def _load_sampling_config(
        self,
        sampling_config_path: Path | None = None,
        sampling_config_name: str = "default",
        sampling_config_overrides: list[str] | None = None,
    ) -> DictConfig:
        if sampling_config_path is None:
            sampling_config_path = DEFAULT_SAMPLING_CONFIG_PATH

        if sampling_config_overrides is None:
            sampling_config_overrides = []

        with hydra.initialize_config_dir(os.path.abspath(str(sampling_config_path))):
            sampling_config = hydra.compose(
                config_name=sampling_config_name, overrides=sampling_config_overrides
            )
        return sampling_config

    def prepare(self) -> None:
        """Loads the model from checkpoint and prepares for generation."""
        if self._model is not None:
            return
        model = load_model_diffusion(self.checkpoint_info)
        model = model.to(get_device())
        self._model = model
        self._cfg = self.checkpoint_info.config

    def generate(
        self,
        batch_size: int | None = None,
        num_batches: int | None = None,
        target_compositions_dict: list[dict[str, float]] | None = None,
        output_dir: str = "outputs",
    ) -> list[Structure]:
        # Prioritize the runtime provided batch_size, num_batches and target_compositions_dict
        batch_size = batch_size or self.batch_size
        num_batches = num_batches or self.num_batches
        target_compositions_dict = target_compositions_dict or self.target_compositions_dict
        assert batch_size is not None
        assert num_batches is not None

        # print config for debugging and reproducibility
        print("\nModel config:")
        print(OmegaConf.to_yaml(self.cfg, resolve=True))

        sampling_config = self.load_sampling_config(
            batch_size=batch_size,
            num_batches=num_batches,
            target_compositions_dict=target_compositions_dict,
        )

        print("\nSampling config:")
        print(OmegaConf.to_yaml(sampling_config, resolve=True))
        condition_loader = self.get_condition_loader(sampling_config, target_compositions_dict)

        sampler_partial = instantiate(sampling_config.sampler_partial)
        sampler = sampler_partial(pl_module=self.model)

        generated_structures = draw_samples_from_sampler(
            sampler=sampler,
            condition_loader=condition_loader,
            cfg=self.cfg,
            output_path=Path(output_dir),
            properties_to_condition_on=self.properties_to_condition_on,
            record_trajectories=self.record_trajectories,
        )

        return generated_structures