Mattergen / data /mattergen /diffusion /diffusion_module.py
introvoyz041's picture
Migrated from GitHub
cfeea40 verified
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
from typing import Callable, Generic, TypeVar
import torch
from mattergen.diffusion.corruption.multi_corruption import MultiCorruption, apply
from mattergen.diffusion.data.batched_data import BatchedData
from mattergen.diffusion.losses import Loss
from mattergen.diffusion.model_target import ModelTarget
from mattergen.diffusion.model_utils import convert_model_out_to_score
from mattergen.diffusion.score_models.base import ScoreModel
from mattergen.diffusion.timestep_samplers import TimestepSampler, UniformTimestepSampler
T = TypeVar("T", bound=BatchedData)
BatchTransform = Callable[[T], T]
def identity(x: T) -> T:
return x
class DiffusionModule(torch.nn.Module, Generic[T]):
"""Denoising diffusion model for a multi-part state"""
def __init__(
self,
model: ScoreModel[T],
corruption: MultiCorruption[T],
loss_fn: Loss,
pre_corruption_fn: BatchTransform | None = None,
timestep_sampler: TimestepSampler | None = None,
) -> None:
super().__init__()
self.model = model
self.corruption = corruption
self.loss_fn = loss_fn
self.pre_corruption_fn = pre_corruption_fn or identity
self.model_targets = {k: ModelTarget(v) for k, v in loss_fn.model_targets.items()}
self.timestep_sampler = timestep_sampler or UniformTimestepSampler(
min_t=1e-5,
max_t=corruption.T,
)
# Check corruption for nn.Modules and register them here.
self._register_corruption_modules()
def _register_corruption_modules(self):
"""
Register corruptions that are instances of `torch.nn.Module`s for proper device, parameter,
etc handling.
"""
assert isinstance(self.corruption, MultiCorruption)
for idx, (key, _corruption) in enumerate(self.corruption._corruptions.items()):
if isinstance(_corruption, torch.nn.Module):
self.register_module(f"MultiCorruption:{idx}:{key}", _corruption)
def calc_loss(
self, batch: T, node_is_unmasked: torch.LongTensor | None = None
) -> tuple[torch.Tensor, dict[str, torch.Tensor]]:
"""
Calculate loss and metrics given a batch of clean data which may include
context/conditioning fields. Add noise, predict score using score model, then calculate
loss.
Args:
batch: batch of training data
node_is_unmasked: mask that has a value 1 for nodes that are included in the loss, and
a value of 0 for nodes that should be ignored. If None, all nodes are included.
Returns:
loss: the loss for the batch
metrics: a dictionary of metrics for the batch
"""
batch = self.pre_corruption_fn(batch)
noisy_batch, t = self._corrupt_batch(batch)
score_model_output = self.model(noisy_batch, t)
loss, metrics = self.loss_fn(
multi_corruption=self.corruption,
batch=batch,
noisy_batch=noisy_batch,
score_model_output=score_model_output,
t=t,
node_is_unmasked=node_is_unmasked,
)
assert loss.numel() == 1
return loss, metrics
def _corrupt_batch(
self,
batch: T,
) -> tuple[T, torch.Tensor]:
"""
Corrupt a batch of data for use in a training step:
- sample a different timestep for each sample in the batch
- add noise according to the corruption process
Args:
batch: Batch of clean states
Returns:
noisy_batch: batch of noisy samples
t: the timestep used for each sample in the batch
"""
# Sample timesteps
t = self.sample_timesteps(batch)
# Add noise to data
noisy_batch = self.corruption.sample_marginal(batch, t)
return noisy_batch, t
def score_fn(self, x: T, t: torch.Tensor) -> T:
"""Calculate the score of a batch of data at a given timestep
Args:
x: batch of data
t: timestep
Returns:
score: score of the batch of data at the given timestep
"""
model_out: T = self.model(x, t)
fns = {k: convert_model_out_to_score for k in self.corruption.sdes.keys()}
scores = apply(
fns=fns,
model_out=model_out,
broadcast=dict(t=t, batch=x),
sde=self.corruption.sdes,
model_target=self.model_targets,
batch_idx=self.corruption._get_batch_indices(x),
)
return model_out.replace(**scores)
def sample_timesteps(self, batch: T) -> torch.Tensor:
"""Sample the timesteps, which will be used to determine how much noise
to add to data.
Args:
batch: batch of data to be corrupted
Returns: sampled timesteps
"""
return self.timestep_sampler(
batch_size=batch.get_batch_size(),
device=self._get_device(batch),
)
def _get_device(self, batch: T) -> torch.device:
return next(batch[k].device for k in self.corruption.sdes.keys())