|
|
|
|
|
|
|
from typing import Callable, Generic, TypeVar |
|
|
|
import torch |
|
|
|
from mattergen.diffusion.corruption.multi_corruption import MultiCorruption, apply |
|
from mattergen.diffusion.data.batched_data import BatchedData |
|
from mattergen.diffusion.losses import Loss |
|
from mattergen.diffusion.model_target import ModelTarget |
|
from mattergen.diffusion.model_utils import convert_model_out_to_score |
|
from mattergen.diffusion.score_models.base import ScoreModel |
|
from mattergen.diffusion.timestep_samplers import TimestepSampler, UniformTimestepSampler |
|
|
|
T = TypeVar("T", bound=BatchedData) |
|
BatchTransform = Callable[[T], T] |
|
|
|
|
|
def identity(x: T) -> T: |
|
return x |
|
|
|
|
|
class DiffusionModule(torch.nn.Module, Generic[T]): |
|
"""Denoising diffusion model for a multi-part state""" |
|
|
|
def __init__( |
|
self, |
|
model: ScoreModel[T], |
|
corruption: MultiCorruption[T], |
|
loss_fn: Loss, |
|
pre_corruption_fn: BatchTransform | None = None, |
|
timestep_sampler: TimestepSampler | None = None, |
|
) -> None: |
|
super().__init__() |
|
self.model = model |
|
self.corruption = corruption |
|
self.loss_fn = loss_fn |
|
self.pre_corruption_fn = pre_corruption_fn or identity |
|
self.model_targets = {k: ModelTarget(v) for k, v in loss_fn.model_targets.items()} |
|
|
|
self.timestep_sampler = timestep_sampler or UniformTimestepSampler( |
|
min_t=1e-5, |
|
max_t=corruption.T, |
|
) |
|
|
|
|
|
self._register_corruption_modules() |
|
|
|
def _register_corruption_modules(self): |
|
""" |
|
Register corruptions that are instances of `torch.nn.Module`s for proper device, parameter, |
|
etc handling. |
|
""" |
|
assert isinstance(self.corruption, MultiCorruption) |
|
for idx, (key, _corruption) in enumerate(self.corruption._corruptions.items()): |
|
if isinstance(_corruption, torch.nn.Module): |
|
self.register_module(f"MultiCorruption:{idx}:{key}", _corruption) |
|
|
|
def calc_loss( |
|
self, batch: T, node_is_unmasked: torch.LongTensor | None = None |
|
) -> tuple[torch.Tensor, dict[str, torch.Tensor]]: |
|
""" |
|
Calculate loss and metrics given a batch of clean data which may include |
|
context/conditioning fields. Add noise, predict score using score model, then calculate |
|
loss. |
|
|
|
Args: |
|
batch: batch of training data |
|
node_is_unmasked: mask that has a value 1 for nodes that are included in the loss, and |
|
a value of 0 for nodes that should be ignored. If None, all nodes are included. |
|
|
|
Returns: |
|
loss: the loss for the batch |
|
metrics: a dictionary of metrics for the batch |
|
""" |
|
batch = self.pre_corruption_fn(batch) |
|
|
|
noisy_batch, t = self._corrupt_batch(batch) |
|
|
|
score_model_output = self.model(noisy_batch, t) |
|
loss, metrics = self.loss_fn( |
|
multi_corruption=self.corruption, |
|
batch=batch, |
|
noisy_batch=noisy_batch, |
|
score_model_output=score_model_output, |
|
t=t, |
|
node_is_unmasked=node_is_unmasked, |
|
) |
|
assert loss.numel() == 1 |
|
|
|
return loss, metrics |
|
|
|
def _corrupt_batch( |
|
self, |
|
batch: T, |
|
) -> tuple[T, torch.Tensor]: |
|
""" |
|
Corrupt a batch of data for use in a training step: |
|
- sample a different timestep for each sample in the batch |
|
- add noise according to the corruption process |
|
|
|
Args: |
|
batch: Batch of clean states |
|
|
|
Returns: |
|
noisy_batch: batch of noisy samples |
|
t: the timestep used for each sample in the batch |
|
|
|
""" |
|
|
|
t = self.sample_timesteps(batch) |
|
|
|
|
|
noisy_batch = self.corruption.sample_marginal(batch, t) |
|
|
|
return noisy_batch, t |
|
|
|
def score_fn(self, x: T, t: torch.Tensor) -> T: |
|
"""Calculate the score of a batch of data at a given timestep |
|
|
|
Args: |
|
x: batch of data |
|
t: timestep |
|
|
|
Returns: |
|
score: score of the batch of data at the given timestep |
|
""" |
|
model_out: T = self.model(x, t) |
|
fns = {k: convert_model_out_to_score for k in self.corruption.sdes.keys()} |
|
|
|
scores = apply( |
|
fns=fns, |
|
model_out=model_out, |
|
broadcast=dict(t=t, batch=x), |
|
sde=self.corruption.sdes, |
|
model_target=self.model_targets, |
|
batch_idx=self.corruption._get_batch_indices(x), |
|
) |
|
|
|
return model_out.replace(**scores) |
|
|
|
def sample_timesteps(self, batch: T) -> torch.Tensor: |
|
"""Sample the timesteps, which will be used to determine how much noise |
|
to add to data. |
|
|
|
Args: |
|
batch: batch of data to be corrupted |
|
|
|
Returns: sampled timesteps |
|
""" |
|
return self.timestep_sampler( |
|
batch_size=batch.get_batch_size(), |
|
device=self._get_device(batch), |
|
) |
|
|
|
def _get_device(self, batch: T) -> torch.device: |
|
return next(batch[k].device for k in self.corruption.sdes.keys()) |
|
|