introvoyz041's picture
Migrated from GitHub
cfeea40 verified
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
from functools import partial
from typing import Dict, Literal, Optional, Protocol, Tuple, TypeVar
import torch
from mattergen.diffusion.corruption.multi_corruption import MultiCorruption, apply
from mattergen.diffusion.data.batched_data import BatchedData
from mattergen.diffusion.model_target import ModelTargets
from mattergen.diffusion.training.field_loss import FieldLoss, denoising_score_matching
T = TypeVar("T", bound=BatchedData)
class Loss(Protocol[T]):
"""Loss function for training a score model on multi-field data."""
def __call__(
self,
*,
multi_corruption: MultiCorruption[T],
batch: T,
noisy_batch: T,
score_model_output: T,
t: torch.Tensor,
node_is_unmasked: Optional[torch.LongTensor] = None,
) -> Tuple[torch.Tensor, Dict[str, float]]:
pass
"""model_targets tells us what this loss function trains the score model to predict.
We need this information in order to convert the model output to a score during sampling.
"""
model_targets: ModelTargets
class SummedFieldLoss(Loss[T]):
"""(Weighted) sum of different loss functions applied on each field."""
def __init__(
self,
loss_fns: Dict[str, FieldLoss],
model_targets: ModelTargets,
weights: Optional[Dict[str, float]] = None,
) -> None:
self.model_targets = model_targets
self.loss_fns = loss_fns
# weights are optional, if not provided, all fields are weighted equally with weight 1.
if weights is None:
self.loss_weights = {k: 1.0 for k in self.loss_fns.keys()}
else:
assert set(weights.keys()) == set(
self.loss_fns.keys()
), f"weight keys {set(weights.keys())} do not match loss_fns keys {set(self.loss_fns.keys())}"
self.loss_weights = weights
def __call__(
self,
*,
multi_corruption: MultiCorruption[T],
batch: T,
noisy_batch: T,
score_model_output: T,
t: torch.Tensor,
node_is_unmasked: Optional[torch.LongTensor] = None,
) -> Tuple[torch.Tensor, Dict[str, float]]:
batch_idx = {k: batch.get_batch_idx(k) for k in self.loss_fns.keys()}
node_is_unmasked = {k: node_is_unmasked for k in self.loss_fns.keys()}
# Dict[str, torch.Tensor]
# Keys are field names and values are loss per sample, with shape (batch_size,).
loss_per_sample_per_field = apply(
fns=self.loss_fns,
corruption=multi_corruption.corruptions,
x=batch,
noisy_x=noisy_batch,
score_model_output=score_model_output,
batch_idx=batch_idx,
broadcast=dict(t=t, batch_size=batch.get_batch_size(), batch=batch),
node_is_unmasked=node_is_unmasked,
)
assert set([v.shape for v in loss_per_sample_per_field.values()]) == {
(batch.get_batch_size(),)
}, "All losses should have shape (batch_size,)."
# Aggregate losses per field over samples.
scalar_loss_per_field = {k: v.mean() for k, v in loss_per_sample_per_field.items()}
# Dict[str, torch.Tensor], dictionary containing metrics to be logged,
metrics_dict = scalar_loss_per_field
# This is the loss that is used for backpropagation (after mean aggregation over samples).
# Shape: (batch_size,)
agg_loss = torch.stack(
[self.loss_weights[k] * v for k, v in loss_per_sample_per_field.items()], dim=0
).sum(0)
return (
agg_loss.mean(),
metrics_dict,
)
class DenoisingScoreMatchingLoss(SummedFieldLoss):
def __init__(
self,
model_targets: ModelTargets,
reduce: Literal["sum", "mean"] = "mean",
weights: Optional[Dict[str, float]] = None,
field_center_zero: Optional[Dict[str, bool]] = None, # Whether to zero center each field.
):
if field_center_zero is not None:
assert set(field_center_zero.keys()) == set(model_targets.keys())
super().__init__(
loss_fns={
k: partial(
denoising_score_matching,
reduce=reduce,
model_target=v,
)
for k, v in model_targets.items()
},
model_targets=model_targets,
weights=weights,
)