|
|
|
|
|
|
|
from functools import partial |
|
from typing import Dict, Literal, Optional, Protocol, Tuple, TypeVar |
|
|
|
import torch |
|
|
|
from mattergen.diffusion.corruption.multi_corruption import MultiCorruption, apply |
|
from mattergen.diffusion.data.batched_data import BatchedData |
|
from mattergen.diffusion.model_target import ModelTargets |
|
from mattergen.diffusion.training.field_loss import FieldLoss, denoising_score_matching |
|
|
|
T = TypeVar("T", bound=BatchedData) |
|
|
|
|
|
class Loss(Protocol[T]): |
|
"""Loss function for training a score model on multi-field data.""" |
|
|
|
def __call__( |
|
self, |
|
*, |
|
multi_corruption: MultiCorruption[T], |
|
batch: T, |
|
noisy_batch: T, |
|
score_model_output: T, |
|
t: torch.Tensor, |
|
node_is_unmasked: Optional[torch.LongTensor] = None, |
|
) -> Tuple[torch.Tensor, Dict[str, float]]: |
|
pass |
|
|
|
"""model_targets tells us what this loss function trains the score model to predict. |
|
We need this information in order to convert the model output to a score during sampling. |
|
""" |
|
model_targets: ModelTargets |
|
|
|
|
|
class SummedFieldLoss(Loss[T]): |
|
"""(Weighted) sum of different loss functions applied on each field.""" |
|
|
|
def __init__( |
|
self, |
|
loss_fns: Dict[str, FieldLoss], |
|
model_targets: ModelTargets, |
|
weights: Optional[Dict[str, float]] = None, |
|
) -> None: |
|
self.model_targets = model_targets |
|
self.loss_fns = loss_fns |
|
|
|
if weights is None: |
|
self.loss_weights = {k: 1.0 for k in self.loss_fns.keys()} |
|
else: |
|
assert set(weights.keys()) == set( |
|
self.loss_fns.keys() |
|
), f"weight keys {set(weights.keys())} do not match loss_fns keys {set(self.loss_fns.keys())}" |
|
self.loss_weights = weights |
|
|
|
def __call__( |
|
self, |
|
*, |
|
multi_corruption: MultiCorruption[T], |
|
batch: T, |
|
noisy_batch: T, |
|
score_model_output: T, |
|
t: torch.Tensor, |
|
node_is_unmasked: Optional[torch.LongTensor] = None, |
|
) -> Tuple[torch.Tensor, Dict[str, float]]: |
|
batch_idx = {k: batch.get_batch_idx(k) for k in self.loss_fns.keys()} |
|
node_is_unmasked = {k: node_is_unmasked for k in self.loss_fns.keys()} |
|
|
|
|
|
|
|
loss_per_sample_per_field = apply( |
|
fns=self.loss_fns, |
|
corruption=multi_corruption.corruptions, |
|
x=batch, |
|
noisy_x=noisy_batch, |
|
score_model_output=score_model_output, |
|
batch_idx=batch_idx, |
|
broadcast=dict(t=t, batch_size=batch.get_batch_size(), batch=batch), |
|
node_is_unmasked=node_is_unmasked, |
|
) |
|
assert set([v.shape for v in loss_per_sample_per_field.values()]) == { |
|
(batch.get_batch_size(),) |
|
}, "All losses should have shape (batch_size,)." |
|
|
|
scalar_loss_per_field = {k: v.mean() for k, v in loss_per_sample_per_field.items()} |
|
|
|
|
|
metrics_dict = scalar_loss_per_field |
|
|
|
|
|
agg_loss = torch.stack( |
|
[self.loss_weights[k] * v for k, v in loss_per_sample_per_field.items()], dim=0 |
|
).sum(0) |
|
|
|
return ( |
|
agg_loss.mean(), |
|
metrics_dict, |
|
) |
|
|
|
|
|
class DenoisingScoreMatchingLoss(SummedFieldLoss): |
|
def __init__( |
|
self, |
|
model_targets: ModelTargets, |
|
reduce: Literal["sum", "mean"] = "mean", |
|
weights: Optional[Dict[str, float]] = None, |
|
field_center_zero: Optional[Dict[str, bool]] = None, |
|
): |
|
if field_center_zero is not None: |
|
assert set(field_center_zero.keys()) == set(model_targets.keys()) |
|
|
|
super().__init__( |
|
loss_fns={ |
|
k: partial( |
|
denoising_score_matching, |
|
reduce=reduce, |
|
model_target=v, |
|
) |
|
for k, v in model_targets.items() |
|
}, |
|
model_targets=model_targets, |
|
weights=weights, |
|
) |
|
|