|
|
|
|
|
|
|
from __future__ import annotations |
|
|
|
from typing import Generic, Mapping, Tuple, TypeVar |
|
|
|
import torch |
|
from tqdm.auto import tqdm |
|
|
|
from mattergen.diffusion.corruption.multi_corruption import MultiCorruption, apply |
|
from mattergen.diffusion.data.batched_data import BatchedData |
|
from mattergen.diffusion.diffusion_module import DiffusionModule |
|
from mattergen.diffusion.lightning_module import DiffusionLightningModule |
|
from mattergen.diffusion.sampling.pc_partials import CorrectorPartial, PredictorPartial |
|
|
|
Diffusable = TypeVar( |
|
"Diffusable", bound=BatchedData |
|
) |
|
SampleAndMean = Tuple[Diffusable, Diffusable] |
|
SampleAndMeanAndMaybeRecords = Tuple[Diffusable, Diffusable, list[Diffusable] | None] |
|
SampleAndMeanAndRecords = Tuple[Diffusable, Diffusable, list[Diffusable]] |
|
|
|
|
|
class PredictorCorrector(Generic[Diffusable]): |
|
"""Generates samples using predictor-corrector sampling.""" |
|
|
|
def __init__( |
|
self, |
|
*, |
|
diffusion_module: DiffusionModule, |
|
predictor_partials: dict[str, PredictorPartial] | None = None, |
|
corrector_partials: dict[str, CorrectorPartial] | None = None, |
|
device: torch.device, |
|
n_steps_corrector: int, |
|
N: int, |
|
eps_t: float = 1e-3, |
|
max_t: float | None = None, |
|
): |
|
""" |
|
Args: |
|
diffusion_module: diffusion module |
|
predictor_partials: partials for constructing predictors. Keys are the names of the corruptions. |
|
corrector_partials: partials for constructing correctors. Keys are the names of the corruptions. |
|
device: device to run on |
|
n_steps_corrector: number of corrector steps |
|
N: number of noise levels |
|
eps_t: diffusion time to stop denoising at |
|
max_t: diffusion time to start denoising at. If None, defaults to the maximum diffusion time. You may want to start at T-0.01, say, for numerical stability. |
|
""" |
|
self._diffusion_module = diffusion_module |
|
self.N = N |
|
|
|
if max_t is None: |
|
max_t = self._multi_corruption.T |
|
assert max_t <= self._multi_corruption.T, "Denoising cannot start from beyond T" |
|
|
|
self._max_t = max_t |
|
assert ( |
|
corrector_partials or predictor_partials |
|
), "Must specify at least one predictor or corrector" |
|
corrector_partials = corrector_partials or {} |
|
predictor_partials = predictor_partials or {} |
|
if self._multi_corruption.discrete_corruptions: |
|
|
|
assert set(c.N for c in self._multi_corruption.discrete_corruptions.values()) == {N} |
|
|
|
self._predictors = { |
|
k: v(corruption=self._multi_corruption.corruptions[k], score_fn=None) |
|
for k, v in predictor_partials.items() |
|
} |
|
|
|
self._correctors = { |
|
k: v( |
|
corruption=self._multi_corruption.corruptions[k], |
|
n_steps=n_steps_corrector, |
|
score_fn=None, |
|
) |
|
for k, v in corrector_partials.items() |
|
} |
|
self._eps_t = eps_t |
|
self._n_steps_corrector = n_steps_corrector |
|
self._device = device |
|
|
|
@property |
|
def diffusion_module(self) -> DiffusionModule: |
|
return self._diffusion_module |
|
|
|
@property |
|
def _multi_corruption(self) -> MultiCorruption: |
|
return self._diffusion_module.corruption |
|
|
|
def _score_fn(self, x: Diffusable, t: torch.Tensor) -> Diffusable: |
|
return self._diffusion_module.score_fn(x, t) |
|
|
|
@classmethod |
|
def from_pl_module(cls, pl_module: DiffusionLightningModule, **kwargs) -> PredictorCorrector: |
|
return cls(diffusion_module=pl_module.diffusion_module, device=pl_module.device, **kwargs) |
|
|
|
@torch.no_grad() |
|
def sample( |
|
self, conditioning_data: BatchedData, mask: Mapping[str, torch.Tensor] | None = None |
|
) -> SampleAndMean: |
|
"""Create one sample for each of a batch of conditions. |
|
Args: |
|
conditioning_data: batched conditioning data. Even if you think you don't want conditioning, you still need to pass a batch of conditions |
|
because the sampler uses these to determine the shapes of things to generate. |
|
mask: for inpainting. Keys should be a subset of the keys in `data`. 1 indicates data that should be fixed, 0 indicates data that should be replaced with sampled values. |
|
Shapes of values in `mask` must match the shapes of values in `conditioning_data`. |
|
Returns: |
|
(batch, mean_batch). The difference between these is that `mean_batch` has no noise added at the final denoising step. |
|
|
|
""" |
|
return self._sample_maybe_record(conditioning_data, mask=mask, record=False)[:2] |
|
|
|
@torch.no_grad() |
|
def sample_with_record( |
|
self, conditioning_data: BatchedData, mask: Mapping[str, torch.Tensor] | None = None |
|
) -> SampleAndMeanAndRecords: |
|
"""Create one sample for each of a batch of conditions. |
|
Args: |
|
conditioning_data: batched conditioning data. Even if you think you don't want conditioning, you still need to pass a batch of conditions |
|
because the sampler uses these to determine the shapes of things to generate. |
|
mask: for inpainting. Keys should be a subset of the keys in `data`. 1 indicates data that should be fixed, 0 indicates data that should be replaced with sampled values. |
|
Shapes of values in `mask` must match the shapes of values in `conditioning_data`. |
|
Returns: |
|
(batch, mean_batch). The difference between these is that `mean_batch` has no noise added at the final denoising step. |
|
|
|
""" |
|
return self._sample_maybe_record(conditioning_data, mask=mask, record=True) |
|
|
|
@torch.no_grad() |
|
def _sample_maybe_record( |
|
self, |
|
conditioning_data: BatchedData, |
|
mask: Mapping[str, torch.Tensor] | None = None, |
|
record: bool = False, |
|
) -> SampleAndMeanAndMaybeRecords: |
|
"""Create one sample for each of a batch of conditions. |
|
Args: |
|
conditioning_data: batched conditioning data. Even if you think you don't want conditioning, you still need to pass a batch of conditions |
|
because the sampler uses these to determine the shapes of things to generate. |
|
mask: for inpainting. Keys should be a subset of the keys in `data`. 1 indicates data that should be fixed, 0 indicates data that should be replaced with sampled values. |
|
Shapes of values in `mask` must match the shapes of values in `conditioning_data`. |
|
Returns: |
|
(batch, mean_batch, recorded_samples, recorded_predictions). |
|
The difference between the former two is that `mean_batch` has no noise added at the final denoising step. |
|
The latter two are only returned if `record` is True, and contain the samples and predictions from each step of the diffusion process. |
|
|
|
""" |
|
if isinstance(self._diffusion_module, torch.nn.Module): |
|
self._diffusion_module.eval() |
|
mask = mask or {} |
|
conditioning_data = conditioning_data.to(self._device) |
|
mask = {k: v.to(self._device) for k, v in mask.items()} |
|
batch = _sample_prior(self._multi_corruption, conditioning_data, mask=mask) |
|
return self._denoise(batch=batch, mask=mask, record=record) |
|
|
|
@torch.no_grad() |
|
def _denoise( |
|
self, |
|
batch: Diffusable, |
|
mask: dict[str, torch.Tensor], |
|
record: bool = False, |
|
) -> SampleAndMeanAndMaybeRecords: |
|
"""Denoise from a prior sample to a t=eps_t sample.""" |
|
recorded_samples = None |
|
if record: |
|
recorded_samples = [] |
|
for k in self._predictors: |
|
mask.setdefault(k, None) |
|
for k in self._correctors: |
|
mask.setdefault(k, None) |
|
mean_batch = batch.clone() |
|
|
|
|
|
timesteps = torch.linspace(self._max_t, self._eps_t, self.N, device=self._device) |
|
dt = -torch.tensor((self._max_t - self._eps_t) / (self.N - 1)).to(self._device) |
|
|
|
for i in tqdm(range(self.N), miniters=50, mininterval=5): |
|
|
|
t = torch.full((batch.get_batch_size(),), timesteps[i], device=self._device) |
|
|
|
|
|
if self._correctors: |
|
for _ in range(self._n_steps_corrector): |
|
score = self._score_fn(batch, t) |
|
fns = { |
|
k: corrector.step_given_score for k, corrector in self._correctors.items() |
|
} |
|
samples_means: dict[str, Tuple[torch.Tensor, torch.Tensor]] = apply( |
|
fns=fns, |
|
broadcast={"t": t}, |
|
x=batch, |
|
score=score, |
|
batch_idx=self._multi_corruption._get_batch_indices(batch), |
|
) |
|
if record: |
|
recorded_samples.append(batch.clone().to("cpu")) |
|
batch, mean_batch = _mask_replace( |
|
samples_means=samples_means, batch=batch, mean_batch=mean_batch, mask=mask |
|
) |
|
|
|
|
|
score = self._score_fn(batch, t) |
|
predictor_fns = { |
|
k: predictor.update_given_score for k, predictor in self._predictors.items() |
|
} |
|
samples_means = apply( |
|
fns=predictor_fns, |
|
x=batch, |
|
score=score, |
|
broadcast=dict(t=t, batch=batch, dt=dt), |
|
batch_idx=self._multi_corruption._get_batch_indices(batch), |
|
) |
|
if record: |
|
recorded_samples.append(batch.clone().to("cpu")) |
|
batch, mean_batch = _mask_replace( |
|
samples_means=samples_means, batch=batch, mean_batch=mean_batch, mask=mask |
|
) |
|
|
|
return batch, mean_batch, recorded_samples |
|
|
|
|
|
def _mask_replace( |
|
samples_means: dict[str, Tuple[torch.Tensor, torch.Tensor]], |
|
batch: BatchedData, |
|
mean_batch: BatchedData, |
|
mask: dict[str, torch.Tensor | None], |
|
) -> SampleAndMean: |
|
|
|
samples_means = apply( |
|
fns={k: _mask_both for k in samples_means}, |
|
broadcast={}, |
|
sample_and_mean=samples_means, |
|
mask=mask, |
|
old_x=batch, |
|
) |
|
|
|
|
|
batch = batch.replace(**{k: v[0] for k, v in samples_means.items()}) |
|
mean_batch = mean_batch.replace(**{k: v[1] for k, v in samples_means.items()}) |
|
return batch, mean_batch |
|
|
|
|
|
def _mask_both( |
|
*, sample_and_mean: Tuple[torch.Tensor, torch.Tensor], old_x: torch.Tensor, mask: torch.Tensor |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
return tuple(_mask(old_x=old_x, new_x=x, mask=mask) for x in sample_and_mean) |
|
|
|
|
|
def _mask(*, old_x: torch.Tensor, new_x: torch.Tensor, mask: torch.Tensor | None) -> torch.Tensor: |
|
"""Replace new_x with old_x where mask is 1.""" |
|
if mask is None: |
|
return new_x |
|
else: |
|
return new_x.lerp(old_x, mask) |
|
|
|
|
|
def _sample_prior( |
|
multi_corruption: MultiCorruption, |
|
conditioning_data: BatchedData, |
|
mask: Mapping[str, torch.Tensor] | None, |
|
) -> BatchedData: |
|
samples = { |
|
k: multi_corruption.corruptions[k] |
|
.prior_sampling( |
|
shape=conditioning_data[k].shape, |
|
conditioning_data=conditioning_data, |
|
batch_idx=conditioning_data.get_batch_idx(field_name=k), |
|
) |
|
.to(conditioning_data[k].device) |
|
for k in multi_corruption.corruptions |
|
} |
|
mask = mask or {} |
|
for k, msk in mask.items(): |
|
if k in multi_corruption.corrupted_fields: |
|
samples[k].lerp_(conditioning_data[k], msk) |
|
return conditioning_data.replace(**samples) |
|
|