|
|
|
|
|
|
|
import os |
|
from pathlib import Path |
|
from typing import Literal |
|
|
|
import fire |
|
|
|
from mattergen.common.data.types import TargetProperty |
|
from mattergen.common.utils.eval_utils import MatterGenCheckpointInfo |
|
from mattergen.generator import CrystalGenerator |
|
|
|
|
|
def main( |
|
output_path: str, |
|
model_path: str, |
|
batch_size: int = 64, |
|
num_batches: int = 1, |
|
config_overrides: list[str] | None = None, |
|
checkpoint_epoch: Literal["best", "last"] | int = "last", |
|
properties_to_condition_on: TargetProperty | None = None, |
|
sampling_config_path: str | None = None, |
|
sampling_config_name: str = "default", |
|
sampling_config_overrides: list[str] | None = None, |
|
record_trajectories: bool = True, |
|
diffusion_guidance_factor: float | None = None, |
|
strict_checkpoint_loading: bool = True, |
|
target_compositions: list[dict[str, int]] | None = None, |
|
): |
|
""" |
|
Evaluate diffusion model against molecular metrics. |
|
|
|
Args: |
|
model_path: Path to DiffusionLightningModule checkpoint directory. |
|
output_path: Path to output directory. |
|
config_overrides: Overrides for the model config, e.g., `model.num_layers=3 model.hidden_dim=128`. |
|
properties_to_condition_on: Property value to draw conditional sampling with respect to. When this value is an empty dictionary (default), unconditional samples are drawn. |
|
sampling_config_path: Path to the sampling config file. (default: None, in which case we use `DEFAULT_SAMPLING_CONFIG_PATH` from explorers.common.utils.utils.py) |
|
sampling_config_name: Name of the sampling config (corresponds to `{sampling_config_path}/{sampling_config_name}.yaml` on disk). (default: default) |
|
sampling_config_overrides: Overrides for the sampling config, e.g., `condition_loader_partial.batch_size=32`. |
|
load_epoch: Epoch to load from the checkpoint. If None, the best epoch is loaded. (default: None) |
|
record: Whether to record the trajectories of the generated structures. (default: True) |
|
strict_checkpoint_loading: Whether to raise an exception when not all parameters from the checkpoint can be matched to the model. |
|
target_compositions: List of dictionaries with target compositions to condition on. Each dictionary should have the form `{element: number_of_atoms}`. If None, the target compositions are not conditioned on. |
|
Only supported for models trained for crystal structure prediction (CSP) (default: None) |
|
|
|
NOTE: When specifying dictionary values via the CLI, make sure there is no whitespace between the key and value, e.g., `--properties_to_condition_on={key1:value1}`. |
|
""" |
|
if not os.path.exists(output_path): |
|
os.makedirs(output_path) |
|
|
|
sampling_config_overrides = sampling_config_overrides or [] |
|
config_overrides = config_overrides or [] |
|
properties_to_condition_on = properties_to_condition_on or {} |
|
target_compositions = target_compositions or [] |
|
|
|
checkpoint_info = MatterGenCheckpointInfo( |
|
model_path=Path(model_path).resolve(), |
|
load_epoch=checkpoint_epoch, |
|
config_overrides=config_overrides, |
|
strict_checkpoint_loading=strict_checkpoint_loading, |
|
) |
|
_sampling_config_path = Path(sampling_config_path) if sampling_config_path is not None else None |
|
generator = CrystalGenerator( |
|
checkpoint_info=checkpoint_info, |
|
properties_to_condition_on=properties_to_condition_on, |
|
batch_size=batch_size, |
|
num_batches=num_batches, |
|
sampling_config_name=sampling_config_name, |
|
sampling_config_path=_sampling_config_path, |
|
sampling_config_overrides=sampling_config_overrides, |
|
record_trajectories=record_trajectories, |
|
diffusion_guidance_factor=( |
|
diffusion_guidance_factor if diffusion_guidance_factor is not None else 0.0 |
|
), |
|
target_compositions_dict=target_compositions, |
|
) |
|
generator.generate(output_dir=Path(output_path)) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
fire.Fire(main) |
|
|