# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. from __future__ import annotations from collections import deque from typing import Any, Dict, Generic, Optional, Protocol, Sequence, TypeVar, Union import numpy as np import pytorch_lightning as pl import torch from hydra.errors import InstantiationException from hydra.utils import instantiate from omegaconf import DictConfig from pytorch_lightning.utilities.types import STEP_OUTPUT from torch.optim import AdamW, Optimizer from tqdm import tqdm from mattergen.diffusion.config import Config from mattergen.diffusion.data.batched_data import BatchedData from mattergen.diffusion.diffusion_module import DiffusionModule T = TypeVar("T", bound=BatchedData) class OptimizerPartial(Protocol): """Callable to instantiate an optimizer.""" def __call__(self, params: Any) -> Optimizer: raise NotImplementedError class SchedulerPartial(Protocol): """Callable to instantiate a learning rate scheduler.""" def __call__(self, optimizer: Optimizer) -> Any: raise NotImplementedError def get_default_optimizer(params): return AdamW(params=params, lr=1e-4, weight_decay=0, amsgrad=True) class DiffusionLightningModule(pl.LightningModule, Generic[T]): """LightningModule for instantiating and training a DiffusionModule.""" def __init__( self, diffusion_module: DiffusionModule[T], optimizer_partial: Optional[OptimizerPartial] = None, scheduler_partials: Optional[Sequence[Dict[str, Union[Any, SchedulerPartial]]]] = None, ): """_summary_ Args: diffusion_module: The diffusion module to use. optimizer_partial: Used to instantiate optimizer. scheduler_partials: used to instantiate learning rate schedulers """ super().__init__() scheduler_partials = scheduler_partials or [] optimizer_partial = optimizer_partial or get_default_optimizer self.save_hyperparameters( ignore=("optimizer_partial", "scheduler_partials", "diffusion_module") ) self.diffusion_module = diffusion_module self._optimizer_partial = optimizer_partial self._scheduler_partials = scheduler_partials @classmethod def load_from_checkpoint( cls, checkpoint_path: str, map_location: Optional[str] = None, **kwargs, ) -> DiffusionLightningModule: """Load model from checkpoint. kwargs are passed to hydra's instantiate and can override arguments from the checkpoint config.""" checkpoint = torch.load(checkpoint_path, map_location=map_location) # The config should have been saved in the checkpoint by AddConfigCallback in run.py config = Config(**checkpoint["config"]) try: lightning_module = instantiate(config.lightning_module, **kwargs) except InstantiationException as e: print("Could not instantiate model from the checkpoint.") print( "If the error is due to an unexpected argument because the checkpoint and the code have diverged, try using load_from_checkpoint_and_config instead." ) raise e assert isinstance(lightning_module, cls) # Restore state of the DiffusionLightningModule. lightning_module.load_state_dict(checkpoint["state_dict"]) return lightning_module @classmethod def load_from_checkpoint_and_config( cls, checkpoint_path: str, config: DictConfig, map_location: Optional[str] = None, strict: bool = True, ) -> tuple[DiffusionLightningModule, torch.nn.modules.module._IncompatibleKeys]: """Load model from checkpoint, but instead of using the config stored in the checkpoint, use the config passed in as an argument. This is useful when, e.g., an unused argument was removed in the code but is still present in the checkpoint config.""" checkpoint = torch.load(checkpoint_path, map_location=map_location) lightning_module = instantiate(config) assert isinstance(lightning_module, cls) # Restore state of the DiffusionLightningModule. result = lightning_module.load_state_dict(checkpoint["state_dict"], strict=strict) return lightning_module, result def configure_optimizers(self) -> Any: optimizer = self._optimizer_partial(params=self.diffusion_module.parameters()) if self._scheduler_partials: lr_schedulers = [ { **scheduler_dict, "scheduler": scheduler_dict["scheduler"]( optimizer=optimizer, ), } for scheduler_dict in self._scheduler_partials ] return [ optimizer, ], lr_schedulers else: return optimizer def training_step(self, train_batch: T, batch_idx: int) -> STEP_OUTPUT: return self._calc_loss(train_batch, True) def validation_step(self, val_batch: T, batch_idx: int) -> Optional[STEP_OUTPUT]: return self._calc_loss(val_batch, False) def test_step(self, test_batch: T, batch_idx: int) -> Optional[STEP_OUTPUT]: return self._calc_loss(test_batch, False) def _calc_loss(self, batch: T, train: bool) -> Optional[STEP_OUTPUT]: """Calculate loss and metrics given a batch of clean data.""" loss, metrics = self.diffusion_module.calc_loss(batch) # Log the results step_type = "train" if train else "val" batch_size = batch.get_batch_size() self.log( f"loss_{step_type}", loss, on_step=train, on_epoch=True, prog_bar=train, batch_size=batch_size, sync_dist=True, ) for k, v in metrics.items(): self.log( f"{k}_{step_type}", v, on_step=train, on_epoch=True, prog_bar=train, batch_size=batch_size, sync_dist=True, ) return loss