# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import math from typing import Any, TypeVar import torch from mattergen.diffusion.corruption.sde_lib import SDE from mattergen.diffusion.data.batched_data import BatchedData from mattergen.diffusion.model_target import ModelTarget T = TypeVar("T", bound=BatchedData) def convert_model_out_to_score( *, model_target: ModelTarget, sde: SDE, model_out: torch.Tensor, batch_idx: torch.LongTensor, t: torch.Tensor, batch: Any ) -> torch.Tensor: """ Convert a model output to a score, according to the specified model_target. model_target: says what the model predicts. For example, in RFDiffusion the model predicts clean coordinates; in EDM the model predicts the raw noise. sde: corruption process model_out: model output batch_idx: indicates which sample each row of model_out belongs to noisy_x: noisy data t: diffusion timestep batch: noisy batch, ignored except by strange SDEs """ _, std = sde.marginal_prob( x=torch.ones_like(model_out), t=t, batch_idx=batch_idx, batch=batch, ) # Note the slack tolerances in test_model_utils.py: the choice of ModelTarget does make a difference. if model_target == ModelTarget.score_times_std: return model_out / std elif model_target == ModelTarget.logits: # Not really a score, but logits will be handled downstream. return model_out else: raise NotImplementedError class NoiseLevelEncoding(torch.nn.Module): """ From: https://pytorch.org/tutorials/beginner/transformer_tutorial.html """ def __init__(self, d_model: int, dropout: float = 0.0): super().__init__() self.dropout = torch.nn.Dropout(p=dropout) self.d_model = d_model div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)) self.register_buffer("div_term", div_term) def forward(self, t: torch.Tensor) -> torch.Tensor: """ Args: t: Tensor, shape [batch_size] """ x = torch.zeros((t.shape[0], self.d_model), device=self.div_term.device) x[:, 0::2] = torch.sin(t[:, None] * self.div_term[None]) x[:, 1::2] = torch.cos(t[:, None] * self.div_term[None]) return self.dropout(x)