# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. from typing import Protocol import torch from mattergen.diffusion.corruption.sde_lib import SDE class TimestepSampler(Protocol): min_t: float max_t: float def __call__(self, batch_size: int, device: torch.device) -> torch.FloatTensor: raise NotImplementedError class UniformTimestepSampler: """Samples diffusion timesteps uniformly over the training time.""" def __init__( self, *, min_t: float, max_t: float, ): """Initializes the sampler. Args: min_t (float): Smallest timestep that will be seen during training. max_t (float): Largest timestep that will be seen during training. """ super().__init__() self.min_t = min_t self.max_t = max_t def __call__(self, batch_size: int, device: torch.device) -> torch.FloatTensor: return torch.rand(batch_size, device=device) * (self.max_t - self.min_t) + self.min_t