# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. from typing import Iterable, Union import torch def get_grad_norm( parameters: Union[torch.Tensor, Iterable[torch.Tensor]], norm_type: float = 2.0 ) -> torch.Tensor: """ Adapted from: https://pytorch.org/docs/stable/_modules/torch/nn/utils/clip_grad.html#clip_grad_norm_ """ if isinstance(parameters, torch.Tensor): parameters = [parameters] parameters = [p for p in parameters if p.grad is not None] norm_type = float(norm_type) if len(parameters) == 0: return torch.tensor(0.0) device = parameters[0].grad.device total_norm = torch.norm( torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]), norm_type, ) return total_norm