# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import io import os from dataclasses import dataclass from pathlib import Path from zipfile import ZipFile import ase.io import hydra import torch from hydra.utils import instantiate from omegaconf import DictConfig, OmegaConf from pymatgen.core.structure import Structure from pymatgen.io.ase import AseAtomsAdaptor from tqdm import tqdm from mattergen.common.data.chemgraph import ChemGraph from mattergen.common.data.collate import collate from mattergen.common.data.condition_factory import ConditionLoader from mattergen.common.data.num_atoms_distribution import NUM_ATOMS_DISTRIBUTIONS from mattergen.common.data.types import TargetProperty from mattergen.common.utils.data_utils import lattice_matrix_to_params_torch from mattergen.common.utils.eval_utils import ( MatterGenCheckpointInfo, get_crystals_list, load_model_diffusion, make_structure, save_structures, ) from mattergen.common.utils.globals import DEFAULT_SAMPLING_CONFIG_PATH, get_device from mattergen.diffusion.lightning_module import DiffusionLightningModule from mattergen.diffusion.sampling.pc_sampler import PredictorCorrector def draw_samples_from_sampler( sampler: PredictorCorrector, condition_loader: ConditionLoader, properties_to_condition_on: TargetProperty | None = None, output_path: Path | None = None, cfg: DictConfig | None = None, record_trajectories: bool = True, ) -> list[Structure]: # Dict properties_to_condition_on = properties_to_condition_on or {} # we cannot conditional sample on something on which the model was not trained to condition on assert all([key in sampler.diffusion_module.model.cond_fields_model_was_trained_on for key in properties_to_condition_on.keys()]) # type: ignore all_samples_list = [] all_trajs_list = [] for conditioning_data, mask in tqdm(condition_loader, desc="Generating samples"): # generate samples if record_trajectories: sample, mean, intermediate_samples = sampler.sample_with_record(conditioning_data, mask) all_trajs_list.extend(list_of_time_steps_to_list_of_trajectories(intermediate_samples)) else: sample, mean = sampler.sample(conditioning_data, mask) all_samples_list.extend(mean.to_data_list()) all_samples = collate(all_samples_list) assert isinstance(all_samples, ChemGraph) lengths, angles = lattice_matrix_to_params_torch(all_samples.cell) all_samples = all_samples.replace(lengths=lengths, angles=angles) generated_strucs = structure_from_model_output( all_samples["pos"].reshape(-1, 3), all_samples["atomic_numbers"].reshape(-1), all_samples["lengths"].reshape(-1, 3), all_samples["angles"].reshape(-1, 3), all_samples["num_atoms"].reshape(-1), ) if output_path is not None: assert cfg is not None # Save structures to disk in both a extxyz file and a compressed zip file. # do this before uploading to mongo in case there is an authentication error save_structures(output_path, generated_strucs) if record_trajectories: dump_trajectories( output_path=output_path, all_trajs_list=all_trajs_list, ) return generated_strucs def list_of_time_steps_to_list_of_trajectories( list_of_time_steps: list[ChemGraph], ) -> list[list[ChemGraph]]: # Rearrange the shapes of the recorded intermediate samples and predictions # We get a list of many ChemGraphBatches, each containing # many ChemGraphs. Instead, we group all the ChemGraphs of the same trajectory together, # i.e., we construct lists of many lists of # many ChemGraphs. # many lists of many ChemGraphs data_lists_per_timesteps = [x.to_data_list() for x in list_of_time_steps] # many lists of many ChemGraphs. data_lists_per_sample = [ [data_lists_per_timesteps[ix_t][ix_traj] for ix_t in range(len(data_lists_per_timesteps))] for ix_traj in range(len(data_lists_per_timesteps[0])) ] return data_lists_per_sample def dump_trajectories( output_path: Path, all_trajs_list: list[list[ChemGraph]], ) -> None: try: # We gather all trajectories in a single zip file as .extxyz files. # This way we can view them easily after downloading. with ZipFile(output_path / "generated_trajectories.zip", "w") as zip_obj: for ix, traj in enumerate(all_trajs_list): strucs = structures_from_trajectory(traj) ase_atoms = [AseAtomsAdaptor.get_atoms(crystal) for crystal in strucs] str_io = io.StringIO() ase.io.write(str_io, ase_atoms, format="extxyz") str_io.flush() zip_obj.writestr(f"gen_{ix}.extxyz", str_io.getvalue()) except IOError as e: print(f"Got error {e} writing the trajectory to disk.") except ValueError as e: print(f"Got error ValueError '{e}' writing the trajectory to disk.") def structure_from_model_output( frac_coords, atom_types, lengths, angles, num_atoms ) -> list[Structure]: structures = [ make_structure( lengths=d["lengths"], angles=d["angles"], atom_types=d["atom_types"], frac_coords=d["frac_coords"], ) for d in get_crystals_list( frac_coords.cpu(), atom_types.cpu(), lengths.cpu(), angles.cpu(), num_atoms.cpu(), ) ] return structures def structures_from_trajectory(traj: list[ChemGraph]) -> list[Structure]: all_strucs = [] for batch in traj: cell = batch.cell lengths, angles = lattice_matrix_to_params_torch(cell) all_strucs.extend( structure_from_model_output( frac_coords=batch.pos, atom_types=batch.atomic_numbers, lengths=lengths, angles=angles, num_atoms=batch.num_atoms, ) ) return all_strucs @dataclass class CrystalGenerator: checkpoint_info: MatterGenCheckpointInfo # These may be set at runtime batch_size: int | None = None num_batches: int | None = None target_compositions_dict: list[dict[str, float]] | None = None num_atoms_distribution: str = "ALEX_MP_20" # Conditional generation diffusion_guidance_factor: float = 0.0 properties_to_condition_on: TargetProperty | None = None # Additional overrides, only has an effect when using a diffusion-codebase model sampling_config_overrides: list[str] | None = None # These only have an effect when using a legacy model num_samples_per_batch: int = 1 niggli_reduction: bool = False # Config path, if None will default to DEFAULT_SAMPLING_CONFIG_PATH sampling_config_path: Path | None = None sampling_config_name: str = "default" record_trajectories: bool = True # store all intermediate samples by default # These attributes are set when prepare() method is called. _model: DiffusionLightningModule | None = None _cfg: DictConfig | None = None def __post_init__(self) -> None: assert self.num_atoms_distribution in NUM_ATOMS_DISTRIBUTIONS, ( f"num_atoms_distribution must be one of {list(NUM_ATOMS_DISTRIBUTIONS.keys())}, " f"but got {self.num_atoms_distribution}. To add your own distribution, " "please add it to mattergen.common.data.num_atoms_distribution.NUM_ATOMS_DISTRIBUTIONS." ) if len(self.target_compositions_dict) > 0: assert self.cfg.lightning_module.diffusion_module.loss_fn.weights.get( "atomic_numbers", 0.0 ) == 0.0 and "atomic_numbers" not in self.cfg.lightning_module.diffusion_module.corruption.get( "discrete_corruptions", {} ), "Input model appears to have been trained for crystal generation (i.e., with atom type denoising), not crystal structure prediction. Please use a model trained for crystal structure prediction instead." sampling_cfg = self._load_sampling_config( sampling_config_name=self.sampling_config_name, sampling_config_overrides=self.sampling_config_overrides, sampling_config_path=self.sampling_config_path, ) if ( "atomic_numbers" in sampling_cfg.sampler_partial.predictor_partials or "atomic_numbers" in sampling_cfg.sampler_partial.corrector_partials ): raise ValueError( "Incompatible sampling config for crystal structure prediction: found atomic_numbers in predictor_partials or corrector_partials. Use the 'csp' sampling config instead, e.g., via --sampling-config-name=csp." ) @property def model(self) -> DiffusionLightningModule: self.prepare() assert self._model is not None return self._model @property def cfg(self) -> DictConfig: self._cfg = self.checkpoint_info.config assert self._cfg is not None return self._cfg @property def num_structures_to_generate(self) -> int: """Returns the total number of structures to generate if `batch_size` and `num_batches` are specified at construction time; otherwise, raises an AssertionError. """ assert self.batch_size is not None assert self.num_batches is not None return self.batch_size * self.num_batches @property def sampling_config(self) -> DictConfig: """Returns the sampling config if `batch_size` and `num_batches` are specified at construction time; otherwise, raises an AssertionError. """ assert self.batch_size is not None assert self.num_batches is not None return self.load_sampling_config( batch_size=self.batch_size, num_batches=self.num_batches, target_compositions_dict=self.target_compositions_dict, ) def get_condition_loader( self, sampling_config: DictConfig, target_compositions_dict: list[dict[str, float]] | None = None, ) -> ConditionLoader: condition_loader_partial = instantiate(sampling_config.condition_loader_partial) if not target_compositions_dict: return condition_loader_partial(properties=self.properties_to_condition_on) return condition_loader_partial(target_compositions_dict=target_compositions_dict) def load_sampling_config( self, batch_size: int, num_batches: int, target_compositions_dict: list[dict[str, float]] | None = None, ) -> DictConfig: """ Create a sampling config from the given parameters. We specify certain sampling hyperparameters via the sampling config that is loaded via hydra. """ if self.sampling_config_overrides is None: sampling_config_overrides = [] else: # avoid modifying the original list sampling_config_overrides = self.sampling_config_overrides.copy() if not target_compositions_dict: # Default `condition_loader_partial` is # mattergen.common.data.condition_factory.get_number_of_atoms_condition_loader sampling_config_overrides += [ f"+condition_loader_partial.num_atoms_distribution={self.num_atoms_distribution}", f"+condition_loader_partial.batch_size={batch_size}", f"+condition_loader_partial.num_samples={num_batches * batch_size}", f"sampler_partial.guidance_scale={self.diffusion_guidance_factor}", ] else: # `condition_loader_partial` for fixed atom type (crystal structure prediction) num_structures_to_generate_per_composition = ( num_batches * batch_size // len(target_compositions_dict) ) sampling_config_overrides += [ "condition_loader_partial._target_=mattergen.common.data.condition_factory.get_composition_data_loader", f"+condition_loader_partial.num_structures_to_generate_per_composition={num_structures_to_generate_per_composition}", f"+condition_loader_partial.batch_size={batch_size}", ] return self._load_sampling_config( sampling_config_overrides=sampling_config_overrides, sampling_config_path=self.sampling_config_path, sampling_config_name=self.sampling_config_name, ) def _load_sampling_config( self, sampling_config_path: Path | None = None, sampling_config_name: str = "default", sampling_config_overrides: list[str] | None = None, ) -> DictConfig: if sampling_config_path is None: sampling_config_path = DEFAULT_SAMPLING_CONFIG_PATH if sampling_config_overrides is None: sampling_config_overrides = [] with hydra.initialize_config_dir(os.path.abspath(str(sampling_config_path))): sampling_config = hydra.compose( config_name=sampling_config_name, overrides=sampling_config_overrides ) return sampling_config def prepare(self) -> None: """Loads the model from checkpoint and prepares for generation.""" if self._model is not None: return model = load_model_diffusion(self.checkpoint_info) model = model.to(get_device()) self._model = model self._cfg = self.checkpoint_info.config def generate( self, batch_size: int | None = None, num_batches: int | None = None, target_compositions_dict: list[dict[str, float]] | None = None, output_dir: str = "outputs", ) -> list[Structure]: # Prioritize the runtime provided batch_size, num_batches and target_compositions_dict batch_size = batch_size or self.batch_size num_batches = num_batches or self.num_batches target_compositions_dict = target_compositions_dict or self.target_compositions_dict assert batch_size is not None assert num_batches is not None # print config for debugging and reproducibility print("\nModel config:") print(OmegaConf.to_yaml(self.cfg, resolve=True)) sampling_config = self.load_sampling_config( batch_size=batch_size, num_batches=num_batches, target_compositions_dict=target_compositions_dict, ) print("\nSampling config:") print(OmegaConf.to_yaml(sampling_config, resolve=True)) condition_loader = self.get_condition_loader(sampling_config, target_compositions_dict) sampler_partial = instantiate(sampling_config.sampler_partial) sampler = sampler_partial(pl_module=self.model) generated_structures = draw_samples_from_sampler( sampler=sampler, condition_loader=condition_loader, cfg=self.cfg, output_path=Path(output_dir), properties_to_condition_on=self.properties_to_condition_on, record_trajectories=self.record_trajectories, ) return generated_structures