# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import json import logging from collections import OrderedDict from copy import deepcopy from pathlib import Path from typing import Tuple import hydra import omegaconf import pytorch_lightning as pl import torch from omegaconf import DictConfig, OmegaConf, open_dict from pytorch_lightning.cli import SaveConfigCallback from mattergen.common.utils.data_classes import MatterGenCheckpointInfo from mattergen.common.utils.globals import MODELS_PROJECT_ROOT, get_device from mattergen.diffusion.run import AddConfigCallback, SimpleParser, maybe_instantiate logger = logging.getLogger(__name__) def init_adapter_lightningmodule_from_pretrained( adapter_cfg: DictConfig, lightning_module_cfg: DictConfig ) -> Tuple[pl.LightningModule, DictConfig]: assert adapter_cfg.model_path is not None, "model_path must be provided." model_path = Path(hydra.utils.to_absolute_path(adapter_cfg.model_path)) ckpt_info = MatterGenCheckpointInfo(model_path, adapter_cfg.load_epoch) ckpt_path = ckpt_info.checkpoint_path version_root_path = Path(ckpt_path).relative_to(model_path).parents[1] config_path = model_path / version_root_path # load pretrained model config. if (config_path / "config.yaml").exists(): pretrained_cfg_path = config_path else: pretrained_cfg_path = config_path.parent.parent # global hydra already initialized with @hydra.main hydra.core.global_hydra.GlobalHydra.instance().clear() with hydra.initialize_config_dir(str(pretrained_cfg_path.absolute()), version_base="1.1"): pretrained_cfg = hydra.compose(config_name="config") # compose adapter lightning_module config. ## copy denoiser config from pretrained model to adapter config. diffusion_module_cfg = deepcopy(pretrained_cfg.lightning_module.diffusion_module) denoiser_cfg = diffusion_module_cfg.model with open_dict(adapter_cfg.adapter): for k, v in denoiser_cfg.items(): # only legacy denoiser configs should contain property_embeddings_adapt if k != "_target_" and k != "property_embeddings_adapt": adapter_cfg.adapter[k] = v # do not adapt an existing field. if k == "property_embeddings": for field in v: if field in adapter_cfg.adapter.property_embeddings_adapt: adapter_cfg.adapter.property_embeddings_adapt.remove(field) # replace original GemNetT model with GemNetTCtrl model. adapter_cfg.adapter.gemnet["_target_"] = "mattergen.common.gemnet.gemnet_ctrl.GemNetTCtrl" # GemNetTCtrl model has additional input parameter condition_on_adapt, which needs to be set via property_embeddings_adapt. adapter_cfg.adapter.gemnet.condition_on_adapt = list( adapter_cfg.adapter.property_embeddings_adapt ) # copy adapter config back into diffusion module config with open_dict(diffusion_module_cfg): diffusion_module_cfg.model = adapter_cfg.adapter with open_dict(lightning_module_cfg): lightning_module_cfg.diffusion_module = diffusion_module_cfg lightning_module = hydra.utils.instantiate(lightning_module_cfg) ckpt: dict = torch.load(ckpt_path, map_location=get_device()) pretrained_dict: OrderedDict = ckpt["state_dict"] scratch_dict: OrderedDict = lightning_module.state_dict() scratch_dict.update( (k, pretrained_dict[k]) for k in scratch_dict.keys() & pretrained_dict.keys() ) lightning_module.load_state_dict(scratch_dict, strict=True) # freeze pretrained weights if not full finetuning. if not adapter_cfg.full_finetuning: for name, param in lightning_module.named_parameters(): if name in set(pretrained_dict.keys()): param.requires_grad_(False) return lightning_module, lightning_module_cfg @hydra.main( config_path=str(MODELS_PROJECT_ROOT / "conf"), config_name="finetune", version_base="1.1" ) def mattergen_finetune(cfg: omegaconf.DictConfig): # Tensor Core acceleration (leads to ~2x speed-up during training) torch.set_float32_matmul_precision("high") trainer: pl.Trainer = maybe_instantiate(cfg.trainer, pl.Trainer) datamodule: pl.LightningDataModule = maybe_instantiate(cfg.data_module, pl.LightningDataModule) # establish an adapter model pl_module, lightning_module_cfg = init_adapter_lightningmodule_from_pretrained( cfg.adapter, cfg.lightning_module ) # replace denoiser config with adapter config. with open_dict(cfg): cfg.lightning_module = lightning_module_cfg config_as_dict = OmegaConf.to_container(cfg, resolve=True) print(json.dumps(config_as_dict, indent=4)) # This callback will save a config.yaml file. trainer.callbacks.append( SaveConfigCallback( parser=SimpleParser(), config=config_as_dict, overwrite=True, ) ) # This callback will add a copy of the config to each checkpoint. trainer.callbacks.append(AddConfigCallback(config_as_dict)) trainer.fit( model=pl_module, datamodule=datamodule, ckpt_path=None, ) if __name__ == "__main__": mattergen_finetune()