# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import os from pathlib import Path from typing import Literal import fire from mattergen.common.data.types import TargetProperty from mattergen.common.utils.eval_utils import MatterGenCheckpointInfo from mattergen.generator import CrystalGenerator def main( output_path: str, model_path: str, batch_size: int = 64, num_batches: int = 1, config_overrides: list[str] | None = None, checkpoint_epoch: Literal["best", "last"] | int = "last", properties_to_condition_on: TargetProperty | None = None, sampling_config_path: str | None = None, sampling_config_name: str = "default", sampling_config_overrides: list[str] | None = None, record_trajectories: bool = True, diffusion_guidance_factor: float | None = None, strict_checkpoint_loading: bool = True, target_compositions: list[dict[str, int]] | None = None, ): """ Evaluate diffusion model against molecular metrics. Args: model_path: Path to DiffusionLightningModule checkpoint directory. output_path: Path to output directory. config_overrides: Overrides for the model config, e.g., `model.num_layers=3 model.hidden_dim=128`. properties_to_condition_on: Property value to draw conditional sampling with respect to. When this value is an empty dictionary (default), unconditional samples are drawn. sampling_config_path: Path to the sampling config file. (default: None, in which case we use `DEFAULT_SAMPLING_CONFIG_PATH` from explorers.common.utils.utils.py) sampling_config_name: Name of the sampling config (corresponds to `{sampling_config_path}/{sampling_config_name}.yaml` on disk). (default: default) sampling_config_overrides: Overrides for the sampling config, e.g., `condition_loader_partial.batch_size=32`. load_epoch: Epoch to load from the checkpoint. If None, the best epoch is loaded. (default: None) record: Whether to record the trajectories of the generated structures. (default: True) strict_checkpoint_loading: Whether to raise an exception when not all parameters from the checkpoint can be matched to the model. target_compositions: List of dictionaries with target compositions to condition on. Each dictionary should have the form `{element: number_of_atoms}`. If None, the target compositions are not conditioned on. Only supported for models trained for crystal structure prediction (CSP) (default: None) NOTE: When specifying dictionary values via the CLI, make sure there is no whitespace between the key and value, e.g., `--properties_to_condition_on={key1:value1}`. """ if not os.path.exists(output_path): os.makedirs(output_path) sampling_config_overrides = sampling_config_overrides or [] config_overrides = config_overrides or [] properties_to_condition_on = properties_to_condition_on or {} target_compositions = target_compositions or [] checkpoint_info = MatterGenCheckpointInfo( model_path=Path(model_path).resolve(), load_epoch=checkpoint_epoch, config_overrides=config_overrides, strict_checkpoint_loading=strict_checkpoint_loading, ) _sampling_config_path = Path(sampling_config_path) if sampling_config_path is not None else None generator = CrystalGenerator( checkpoint_info=checkpoint_info, properties_to_condition_on=properties_to_condition_on, batch_size=batch_size, num_batches=num_batches, sampling_config_name=sampling_config_name, sampling_config_path=_sampling_config_path, sampling_config_overrides=sampling_config_overrides, record_trajectories=record_trajectories, diffusion_guidance_factor=( diffusion_guidance_factor if diffusion_guidance_factor is not None else 0.0 ), target_compositions_dict=target_compositions, ) generator.generate(output_dir=Path(output_path)) if __name__ == "__main__": # use fire instead of argparse to allow for the specification of dictionary values via the CLI fire.Fire(main)