introvoyz041 commited on
Commit
389d072
·
verified ·
1 Parent(s): d82317f

Migrated from GitHub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. data/.travis.yml +17 -0
  2. data/CONTRIBUTING.md +71 -0
  3. data/LICENSE +674 -0
  4. data/assets/demo-cli.gif +3 -0
  5. data/assets/icons/16x16.png +3 -0
  6. data/assets/icons/32x32.png +3 -0
  7. data/assets/icons/64x64.png +3 -0
  8. data/bin/visma +5 -0
  9. data/main.py +73 -0
  10. data/requirements.txt +10 -0
  11. data/run +89 -0
  12. data/setup.cfg +14 -0
  13. data/setup.py +45 -0
  14. data/tests/__init__.py +0 -0
  15. data/tests/test_calculus.py +79 -0
  16. data/tests/test_discrete.py +39 -0
  17. data/tests/test_functions.py +281 -0
  18. data/tests/test_io.py +127 -0
  19. data/tests/test_matrix.py +409 -0
  20. data/tests/test_simplify.py +110 -0
  21. data/tests/test_solvers.py +93 -0
  22. data/tests/test_transform.py +51 -0
  23. data/tests/test_utils.py +29 -0
  24. data/tests/tester.py +48 -0
  25. data/visma/__init__.py +0 -0
  26. data/visma/calculus/__init__.py +0 -0
  27. data/visma/calculus/differentiation.py +107 -0
  28. data/visma/calculus/integration.py +105 -0
  29. data/visma/config/__init__.py +0 -0
  30. data/visma/config/values.py +11 -0
  31. data/visma/discreteMaths/__init__.py +0 -0
  32. data/visma/discreteMaths/boolean.py +110 -0
  33. data/visma/discreteMaths/combinatorics.py +135 -0
  34. data/visma/discreteMaths/probability.py +35 -0
  35. data/visma/discreteMaths/statistics.py +111 -0
  36. data/visma/functions/__init__.py +0 -0
  37. data/visma/functions/constant.py +255 -0
  38. data/visma/functions/exponential.py +81 -0
  39. data/visma/functions/hyperbolic.py +101 -0
  40. data/visma/functions/operator.py +116 -0
  41. data/visma/functions/structure.py +301 -0
  42. data/visma/functions/trigonometry.py +300 -0
  43. data/visma/functions/variable.py +280 -0
  44. data/visma/gui/__init__.py +0 -0
  45. data/visma/gui/cli.py +267 -0
  46. data/visma/gui/logger.py +59 -0
  47. data/visma/gui/plotter.py +412 -0
  48. data/visma/gui/qsolver.py +108 -0
  49. data/visma/gui/settings.py +92 -0
  50. data/visma/gui/steps.py +65 -0
data/.travis.yml ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ language: python
2
+ python: "3.6"
3
+
4
+ install :
5
+ - pip install pylama==7.6.6
6
+ - pip install pytest==4.1.1
7
+ - pip install coverage
8
+ - pip install coveralls
9
+ - pip install PyQt5==5.11.3
10
+
11
+ script :
12
+ - pylama
13
+ - coverage run --source ./ -m pytest -v
14
+ - coverage report
15
+
16
+ after_success:
17
+ - coveralls
data/CONTRIBUTING.md ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ This is a brief guide on using **visma(VISualMAth)** and for making any contributions to the repo. Since visma is in its early stage, there are many features which can be implemented and many places where it can be improved/optimized.
2
+
3
+ **NOTE:** VISualMAth is supported for **python3** and above only.
4
+
5
+ ### Currently, visma supports the following features
6
+
7
+ * **Simplify** - simplify the whole expression/equation or perform sub-simplifications i.e. addition, subtraction, multiplication and division
8
+ * **Find roots** - find roots for a quadratic equation
9
+ * **Factorize** - factorize a given polynomial
10
+ * **Solve** - solve the equation wrt a variable from a given equation, e.g. x^2 + y = 1, solve for x or y gives x = (1 - y)^0.5 or y = 1 - x^2
11
+ * **Integration** - integrate a polynomial expression wrt a chosen variable
12
+ * **Differentiation** - differentiate a polynomial expression wrt a chosen variable
13
+ * **Plot** - plots an interactive 2D or 3D graph
14
+
15
+ ![visma](https://raw.githubusercontent.com/wiki/aerospaceresearch/visma/assets/demo.gif)
16
+
17
+ ### If interested in making any contributions make sure to go through these steps
18
+
19
+ - Clone/fork the **dev** branch of the repo.
20
+ - Before [building from source](https://github.com/aerospaceresearch/visma/wiki/Beginner's-Guide#To-build-from-source) make sure to install all [dependencies](https://github.com/aerospaceresearch/visma/wiki/Beginner's-Guide#Dependencies)
21
+ - Make necessary changes(follow the [syntax guide](https://github.com/aerospaceresearch/visma/wiki/Beginner's-Guide#Syntax-guide))
22
+ - Before making a PR or commit, run [all modules test](https://github.com/aerospaceresearch/visma/wiki/Beginner's-Guide#Make-sure-all-tests-pass-before-making-a-PR)
23
+ - If all tests pass, make a PR or merge to **dev** branch
24
+
25
+ ### How to contribute
26
+
27
+ Go through the source code, use visma and checkout the io, simplify and solver modules to get an idea of its working.
28
+ - Look for **TODOs**(simple tasks/features) and **FIXMEs**(mostly failing edge cases) throughout the code and try to strike them off
29
+ - Fix already raised [issues](https://github.com/aerospaceresearch/visma/wiki/Install)
30
+ - Add test cases to the relevant test modules for increasing code coverage through unit tests(coverage report can be viewed in htmlcov/index.html folder after running `./run test`)
31
+ - Try adding support for new functions and extend the existing modules(calculus, matrix etc)
32
+ - Add new modules(for ex, multivariable linear equation solver)
33
+
34
+ ### To build from source
35
+
36
+ - [Download](https://github.com/aerospaceresearch/visma/archive/dev.zip) the source code zip
37
+ - Extract files
38
+ - From project folder, do `$ ./run install` or `$ pip install -r requirements.txt`(make sure to check if the pip exists in python3 library by checking the pip version, use `$ pip --version`)
39
+ - For launching visma do
40
+ ```bash
41
+ $ python main.py
42
+ >>> gui
43
+ ```
44
+
45
+ ### Dependencies
46
+
47
+ - The following packages are required for using visma:
48
+ - PyQt5
49
+ - matplotlib
50
+ - numpy
51
+ - The following packages are required for testing visma:
52
+ - pytest
53
+ - pylama
54
+ - coverage
55
+
56
+ ### Syntax guide
57
+
58
+ - Follow **_camelCase_** for naming variables, functions etc. For example:
59
+ - variables: _symTokens_, _axisRange_ etc
60
+ - functions: _tokenizer_, _getLevelVariables_ etc
61
+ - classes: _Function_, _SquareMatrix_ etc
62
+ - Use 4 spaces for tabs
63
+ - Add relevant code to the respective modules
64
+
65
+ ### Make sure all tests pass before making a PR
66
+
67
+ - To run all tests do `./run test`
68
+ - To run only linter/syntax test(pylama) do `./run test syntax`
69
+ - To test all modules(pytest) do `./run test modules`
70
+
71
+ PRs are welcomed. If there are any issues or ideas they can be addressed through the [issues](https://github.com/aerospaceresearch/visma/issues) or in [chat room](https://gitter.im/aerospaceresearch/visma).
data/LICENSE ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ GNU GENERAL PUBLIC LICENSE
2
+ Version 3, 29 June 2007
3
+
4
+ Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
5
+ Everyone is permitted to copy and distribute verbatim copies
6
+ of this license document, but changing it is not allowed.
7
+
8
+ Preamble
9
+
10
+ The GNU General Public License is a free, copyleft license for
11
+ software and other kinds of works.
12
+
13
+ The licenses for most software and other practical works are designed
14
+ to take away your freedom to share and change the works. By contrast,
15
+ the GNU General Public License is intended to guarantee your freedom to
16
+ share and change all versions of a program--to make sure it remains free
17
+ software for all its users. We, the Free Software Foundation, use the
18
+ GNU General Public License for most of our software; it applies also to
19
+ any other work released this way by its authors. You can apply it to
20
+ your programs, too.
21
+
22
+ When we speak of free software, we are referring to freedom, not
23
+ price. Our General Public Licenses are designed to make sure that you
24
+ have the freedom to distribute copies of free software (and charge for
25
+ them if you wish), that you receive source code or can get it if you
26
+ want it, that you can change the software or use pieces of it in new
27
+ free programs, and that you know you can do these things.
28
+
29
+ To protect your rights, we need to prevent others from denying you
30
+ these rights or asking you to surrender the rights. Therefore, you have
31
+ certain responsibilities if you distribute copies of the software, or if
32
+ you modify it: responsibilities to respect the freedom of others.
33
+
34
+ For example, if you distribute copies of such a program, whether
35
+ gratis or for a fee, you must pass on to the recipients the same
36
+ freedoms that you received. You must make sure that they, too, receive
37
+ or can get the source code. And you must show them these terms so they
38
+ know their rights.
39
+
40
+ Developers that use the GNU GPL protect your rights with two steps:
41
+ (1) assert copyright on the software, and (2) offer you this License
42
+ giving you legal permission to copy, distribute and/or modify it.
43
+
44
+ For the developers' and authors' protection, the GPL clearly explains
45
+ that there is no warranty for this free software. For both users' and
46
+ authors' sake, the GPL requires that modified versions be marked as
47
+ changed, so that their problems will not be attributed erroneously to
48
+ authors of previous versions.
49
+
50
+ Some devices are designed to deny users access to install or run
51
+ modified versions of the software inside them, although the manufacturer
52
+ can do so. This is fundamentally incompatible with the aim of
53
+ protecting users' freedom to change the software. The systematic
54
+ pattern of such abuse occurs in the area of products for individuals to
55
+ use, which is precisely where it is most unacceptable. Therefore, we
56
+ have designed this version of the GPL to prohibit the practice for those
57
+ products. If such problems arise substantially in other domains, we
58
+ stand ready to extend this provision to those domains in future versions
59
+ of the GPL, as needed to protect the freedom of users.
60
+
61
+ Finally, every program is threatened constantly by software patents.
62
+ States should not allow patents to restrict development and use of
63
+ software on general-purpose computers, but in those that do, we wish to
64
+ avoid the special danger that patents applied to a free program could
65
+ make it effectively proprietary. To prevent this, the GPL assures that
66
+ patents cannot be used to render the program non-free.
67
+
68
+ The precise terms and conditions for copying, distribution and
69
+ modification follow.
70
+
71
+ TERMS AND CONDITIONS
72
+
73
+ 0. Definitions.
74
+
75
+ "This License" refers to version 3 of the GNU General Public License.
76
+
77
+ "Copyright" also means copyright-like laws that apply to other kinds of
78
+ works, such as semiconductor masks.
79
+
80
+ "The Program" refers to any copyrightable work licensed under this
81
+ License. Each licensee is addressed as "you". "Licensees" and
82
+ "recipients" may be individuals or organizations.
83
+
84
+ To "modify" a work means to copy from or adapt all or part of the work
85
+ in a fashion requiring copyright permission, other than the making of an
86
+ exact copy. The resulting work is called a "modified version" of the
87
+ earlier work or a work "based on" the earlier work.
88
+
89
+ A "covered work" means either the unmodified Program or a work based
90
+ on the Program.
91
+
92
+ To "propagate" a work means to do anything with it that, without
93
+ permission, would make you directly or secondarily liable for
94
+ infringement under applicable copyright law, except executing it on a
95
+ computer or modifying a private copy. Propagation includes copying,
96
+ distribution (with or without modification), making available to the
97
+ public, and in some countries other activities as well.
98
+
99
+ To "convey" a work means any kind of propagation that enables other
100
+ parties to make or receive copies. Mere interaction with a user through
101
+ a computer network, with no transfer of a copy, is not conveying.
102
+
103
+ An interactive user interface displays "Appropriate Legal Notices"
104
+ to the extent that it includes a convenient and prominently visible
105
+ feature that (1) displays an appropriate copyright notice, and (2)
106
+ tells the user that there is no warranty for the work (except to the
107
+ extent that warranties are provided), that licensees may convey the
108
+ work under this License, and how to view a copy of this License. If
109
+ the interface presents a list of user commands or options, such as a
110
+ menu, a prominent item in the list meets this criterion.
111
+
112
+ 1. Source Code.
113
+
114
+ The "source code" for a work means the preferred form of the work
115
+ for making modifications to it. "Object code" means any non-source
116
+ form of a work.
117
+
118
+ A "Standard Interface" means an interface that either is an official
119
+ standard defined by a recognized standards body, or, in the case of
120
+ interfaces specified for a particular programming language, one that
121
+ is widely used among developers working in that language.
122
+
123
+ The "System Libraries" of an executable work include anything, other
124
+ than the work as a whole, that (a) is included in the normal form of
125
+ packaging a Major Component, but which is not part of that Major
126
+ Component, and (b) serves only to enable use of the work with that
127
+ Major Component, or to implement a Standard Interface for which an
128
+ implementation is available to the public in source code form. A
129
+ "Major Component", in this context, means a major essential component
130
+ (kernel, window system, and so on) of the specific operating system
131
+ (if any) on which the executable work runs, or a compiler used to
132
+ produce the work, or an object code interpreter used to run it.
133
+
134
+ The "Corresponding Source" for a work in object code form means all
135
+ the source code needed to generate, install, and (for an executable
136
+ work) run the object code and to modify the work, including scripts to
137
+ control those activities. However, it does not include the work's
138
+ System Libraries, or general-purpose tools or generally available free
139
+ programs which are used unmodified in performing those activities but
140
+ which are not part of the work. For example, Corresponding Source
141
+ includes interface definition files associated with source files for
142
+ the work, and the source code for shared libraries and dynamically
143
+ linked subprograms that the work is specifically designed to require,
144
+ such as by intimate data communication or control flow between those
145
+ subprograms and other parts of the work.
146
+
147
+ The Corresponding Source need not include anything that users
148
+ can regenerate automatically from other parts of the Corresponding
149
+ Source.
150
+
151
+ The Corresponding Source for a work in source code form is that
152
+ same work.
153
+
154
+ 2. Basic Permissions.
155
+
156
+ All rights granted under this License are granted for the term of
157
+ copyright on the Program, and are irrevocable provided the stated
158
+ conditions are met. This License explicitly affirms your unlimited
159
+ permission to run the unmodified Program. The output from running a
160
+ covered work is covered by this License only if the output, given its
161
+ content, constitutes a covered work. This License acknowledges your
162
+ rights of fair use or other equivalent, as provided by copyright law.
163
+
164
+ You may make, run and propagate covered works that you do not
165
+ convey, without conditions so long as your license otherwise remains
166
+ in force. You may convey covered works to others for the sole purpose
167
+ of having them make modifications exclusively for you, or provide you
168
+ with facilities for running those works, provided that you comply with
169
+ the terms of this License in conveying all material for which you do
170
+ not control copyright. Those thus making or running the covered works
171
+ for you must do so exclusively on your behalf, under your direction
172
+ and control, on terms that prohibit them from making any copies of
173
+ your copyrighted material outside their relationship with you.
174
+
175
+ Conveying under any other circumstances is permitted solely under
176
+ the conditions stated below. Sublicensing is not allowed; section 10
177
+ makes it unnecessary.
178
+
179
+ 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180
+
181
+ No covered work shall be deemed part of an effective technological
182
+ measure under any applicable law fulfilling obligations under article
183
+ 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184
+ similar laws prohibiting or restricting circumvention of such
185
+ measures.
186
+
187
+ When you convey a covered work, you waive any legal power to forbid
188
+ circumvention of technological measures to the extent such circumvention
189
+ is effected by exercising rights under this License with respect to
190
+ the covered work, and you disclaim any intention to limit operation or
191
+ modification of the work as a means of enforcing, against the work's
192
+ users, your or third parties' legal rights to forbid circumvention of
193
+ technological measures.
194
+
195
+ 4. Conveying Verbatim Copies.
196
+
197
+ You may convey verbatim copies of the Program's source code as you
198
+ receive it, in any medium, provided that you conspicuously and
199
+ appropriately publish on each copy an appropriate copyright notice;
200
+ keep intact all notices stating that this License and any
201
+ non-permissive terms added in accord with section 7 apply to the code;
202
+ keep intact all notices of the absence of any warranty; and give all
203
+ recipients a copy of this License along with the Program.
204
+
205
+ You may charge any price or no price for each copy that you convey,
206
+ and you may offer support or warranty protection for a fee.
207
+
208
+ 5. Conveying Modified Source Versions.
209
+
210
+ You may convey a work based on the Program, or the modifications to
211
+ produce it from the Program, in the form of source code under the
212
+ terms of section 4, provided that you also meet all of these conditions:
213
+
214
+ a) The work must carry prominent notices stating that you modified
215
+ it, and giving a relevant date.
216
+
217
+ b) The work must carry prominent notices stating that it is
218
+ released under this License and any conditions added under section
219
+ 7. This requirement modifies the requirement in section 4 to
220
+ "keep intact all notices".
221
+
222
+ c) You must license the entire work, as a whole, under this
223
+ License to anyone who comes into possession of a copy. This
224
+ License will therefore apply, along with any applicable section 7
225
+ additional terms, to the whole of the work, and all its parts,
226
+ regardless of how they are packaged. This License gives no
227
+ permission to license the work in any other way, but it does not
228
+ invalidate such permission if you have separately received it.
229
+
230
+ d) If the work has interactive user interfaces, each must display
231
+ Appropriate Legal Notices; however, if the Program has interactive
232
+ interfaces that do not display Appropriate Legal Notices, your
233
+ work need not make them do so.
234
+
235
+ A compilation of a covered work with other separate and independent
236
+ works, which are not by their nature extensions of the covered work,
237
+ and which are not combined with it such as to form a larger program,
238
+ in or on a volume of a storage or distribution medium, is called an
239
+ "aggregate" if the compilation and its resulting copyright are not
240
+ used to limit the access or legal rights of the compilation's users
241
+ beyond what the individual works permit. Inclusion of a covered work
242
+ in an aggregate does not cause this License to apply to the other
243
+ parts of the aggregate.
244
+
245
+ 6. Conveying Non-Source Forms.
246
+
247
+ You may convey a covered work in object code form under the terms
248
+ of sections 4 and 5, provided that you also convey the
249
+ machine-readable Corresponding Source under the terms of this License,
250
+ in one of these ways:
251
+
252
+ a) Convey the object code in, or embodied in, a physical product
253
+ (including a physical distribution medium), accompanied by the
254
+ Corresponding Source fixed on a durable physical medium
255
+ customarily used for software interchange.
256
+
257
+ b) Convey the object code in, or embodied in, a physical product
258
+ (including a physical distribution medium), accompanied by a
259
+ written offer, valid for at least three years and valid for as
260
+ long as you offer spare parts or customer support for that product
261
+ model, to give anyone who possesses the object code either (1) a
262
+ copy of the Corresponding Source for all the software in the
263
+ product that is covered by this License, on a durable physical
264
+ medium customarily used for software interchange, for a price no
265
+ more than your reasonable cost of physically performing this
266
+ conveying of source, or (2) access to copy the
267
+ Corresponding Source from a network server at no charge.
268
+
269
+ c) Convey individual copies of the object code with a copy of the
270
+ written offer to provide the Corresponding Source. This
271
+ alternative is allowed only occasionally and noncommercially, and
272
+ only if you received the object code with such an offer, in accord
273
+ with subsection 6b.
274
+
275
+ d) Convey the object code by offering access from a designated
276
+ place (gratis or for a charge), and offer equivalent access to the
277
+ Corresponding Source in the same way through the same place at no
278
+ further charge. You need not require recipients to copy the
279
+ Corresponding Source along with the object code. If the place to
280
+ copy the object code is a network server, the Corresponding Source
281
+ may be on a different server (operated by you or a third party)
282
+ that supports equivalent copying facilities, provided you maintain
283
+ clear directions next to the object code saying where to find the
284
+ Corresponding Source. Regardless of what server hosts the
285
+ Corresponding Source, you remain obligated to ensure that it is
286
+ available for as long as needed to satisfy these requirements.
287
+
288
+ e) Convey the object code using peer-to-peer transmission, provided
289
+ you inform other peers where the object code and Corresponding
290
+ Source of the work are being offered to the general public at no
291
+ charge under subsection 6d.
292
+
293
+ A separable portion of the object code, whose source code is excluded
294
+ from the Corresponding Source as a System Library, need not be
295
+ included in conveying the object code work.
296
+
297
+ A "User Product" is either (1) a "consumer product", which means any
298
+ tangible personal property which is normally used for personal, family,
299
+ or household purposes, or (2) anything designed or sold for incorporation
300
+ into a dwelling. In determining whether a product is a consumer product,
301
+ doubtful cases shall be resolved in favor of coverage. For a particular
302
+ product received by a particular user, "normally used" refers to a
303
+ typical or common use of that class of product, regardless of the status
304
+ of the particular user or of the way in which the particular user
305
+ actually uses, or expects or is expected to use, the product. A product
306
+ is a consumer product regardless of whether the product has substantial
307
+ commercial, industrial or non-consumer uses, unless such uses represent
308
+ the only significant mode of use of the product.
309
+
310
+ "Installation Information" for a User Product means any methods,
311
+ procedures, authorization keys, or other information required to install
312
+ and execute modified versions of a covered work in that User Product from
313
+ a modified version of its Corresponding Source. The information must
314
+ suffice to ensure that the continued functioning of the modified object
315
+ code is in no case prevented or interfered with solely because
316
+ modification has been made.
317
+
318
+ If you convey an object code work under this section in, or with, or
319
+ specifically for use in, a User Product, and the conveying occurs as
320
+ part of a transaction in which the right of possession and use of the
321
+ User Product is transferred to the recipient in perpetuity or for a
322
+ fixed term (regardless of how the transaction is characterized), the
323
+ Corresponding Source conveyed under this section must be accompanied
324
+ by the Installation Information. But this requirement does not apply
325
+ if neither you nor any third party retains the ability to install
326
+ modified object code on the User Product (for example, the work has
327
+ been installed in ROM).
328
+
329
+ The requirement to provide Installation Information does not include a
330
+ requirement to continue to provide support service, warranty, or updates
331
+ for a work that has been modified or installed by the recipient, or for
332
+ the User Product in which it has been modified or installed. Access to a
333
+ network may be denied when the modification itself materially and
334
+ adversely affects the operation of the network or violates the rules and
335
+ protocols for communication across the network.
336
+
337
+ Corresponding Source conveyed, and Installation Information provided,
338
+ in accord with this section must be in a format that is publicly
339
+ documented (and with an implementation available to the public in
340
+ source code form), and must require no special password or key for
341
+ unpacking, reading or copying.
342
+
343
+ 7. Additional Terms.
344
+
345
+ "Additional permissions" are terms that supplement the terms of this
346
+ License by making exceptions from one or more of its conditions.
347
+ Additional permissions that are applicable to the entire Program shall
348
+ be treated as though they were included in this License, to the extent
349
+ that they are valid under applicable law. If additional permissions
350
+ apply only to part of the Program, that part may be used separately
351
+ under those permissions, but the entire Program remains governed by
352
+ this License without regard to the additional permissions.
353
+
354
+ When you convey a copy of a covered work, you may at your option
355
+ remove any additional permissions from that copy, or from any part of
356
+ it. (Additional permissions may be written to require their own
357
+ removal in certain cases when you modify the work.) You may place
358
+ additional permissions on material, added by you to a covered work,
359
+ for which you have or can give appropriate copyright permission.
360
+
361
+ Notwithstanding any other provision of this License, for material you
362
+ add to a covered work, you may (if authorized by the copyright holders of
363
+ that material) supplement the terms of this License with terms:
364
+
365
+ a) Disclaiming warranty or limiting liability differently from the
366
+ terms of sections 15 and 16 of this License; or
367
+
368
+ b) Requiring preservation of specified reasonable legal notices or
369
+ author attributions in that material or in the Appropriate Legal
370
+ Notices displayed by works containing it; or
371
+
372
+ c) Prohibiting misrepresentation of the origin of that material, or
373
+ requiring that modified versions of such material be marked in
374
+ reasonable ways as different from the original version; or
375
+
376
+ d) Limiting the use for publicity purposes of names of licensors or
377
+ authors of the material; or
378
+
379
+ e) Declining to grant rights under trademark law for use of some
380
+ trade names, trademarks, or service marks; or
381
+
382
+ f) Requiring indemnification of licensors and authors of that
383
+ material by anyone who conveys the material (or modified versions of
384
+ it) with contractual assumptions of liability to the recipient, for
385
+ any liability that these contractual assumptions directly impose on
386
+ those licensors and authors.
387
+
388
+ All other non-permissive additional terms are considered "further
389
+ restrictions" within the meaning of section 10. If the Program as you
390
+ received it, or any part of it, contains a notice stating that it is
391
+ governed by this License along with a term that is a further
392
+ restriction, you may remove that term. If a license document contains
393
+ a further restriction but permits relicensing or conveying under this
394
+ License, you may add to a covered work material governed by the terms
395
+ of that license document, provided that the further restriction does
396
+ not survive such relicensing or conveying.
397
+
398
+ If you add terms to a covered work in accord with this section, you
399
+ must place, in the relevant source files, a statement of the
400
+ additional terms that apply to those files, or a notice indicating
401
+ where to find the applicable terms.
402
+
403
+ Additional terms, permissive or non-permissive, may be stated in the
404
+ form of a separately written license, or stated as exceptions;
405
+ the above requirements apply either way.
406
+
407
+ 8. Termination.
408
+
409
+ You may not propagate or modify a covered work except as expressly
410
+ provided under this License. Any attempt otherwise to propagate or
411
+ modify it is void, and will automatically terminate your rights under
412
+ this License (including any patent licenses granted under the third
413
+ paragraph of section 11).
414
+
415
+ However, if you cease all violation of this License, then your
416
+ license from a particular copyright holder is reinstated (a)
417
+ provisionally, unless and until the copyright holder explicitly and
418
+ finally terminates your license, and (b) permanently, if the copyright
419
+ holder fails to notify you of the violation by some reasonable means
420
+ prior to 60 days after the cessation.
421
+
422
+ Moreover, your license from a particular copyright holder is
423
+ reinstated permanently if the copyright holder notifies you of the
424
+ violation by some reasonable means, this is the first time you have
425
+ received notice of violation of this License (for any work) from that
426
+ copyright holder, and you cure the violation prior to 30 days after
427
+ your receipt of the notice.
428
+
429
+ Termination of your rights under this section does not terminate the
430
+ licenses of parties who have received copies or rights from you under
431
+ this License. If your rights have been terminated and not permanently
432
+ reinstated, you do not qualify to receive new licenses for the same
433
+ material under section 10.
434
+
435
+ 9. Acceptance Not Required for Having Copies.
436
+
437
+ You are not required to accept this License in order to receive or
438
+ run a copy of the Program. Ancillary propagation of a covered work
439
+ occurring solely as a consequence of using peer-to-peer transmission
440
+ to receive a copy likewise does not require acceptance. However,
441
+ nothing other than this License grants you permission to propagate or
442
+ modify any covered work. These actions infringe copyright if you do
443
+ not accept this License. Therefore, by modifying or propagating a
444
+ covered work, you indicate your acceptance of this License to do so.
445
+
446
+ 10. Automatic Licensing of Downstream Recipients.
447
+
448
+ Each time you convey a covered work, the recipient automatically
449
+ receives a license from the original licensors, to run, modify and
450
+ propagate that work, subject to this License. You are not responsible
451
+ for enforcing compliance by third parties with this License.
452
+
453
+ An "entity transaction" is a transaction transferring control of an
454
+ organization, or substantially all assets of one, or subdividing an
455
+ organization, or merging organizations. If propagation of a covered
456
+ work results from an entity transaction, each party to that
457
+ transaction who receives a copy of the work also receives whatever
458
+ licenses to the work the party's predecessor in interest had or could
459
+ give under the previous paragraph, plus a right to possession of the
460
+ Corresponding Source of the work from the predecessor in interest, if
461
+ the predecessor has it or can get it with reasonable efforts.
462
+
463
+ You may not impose any further restrictions on the exercise of the
464
+ rights granted or affirmed under this License. For example, you may
465
+ not impose a license fee, royalty, or other charge for exercise of
466
+ rights granted under this License, and you may not initiate litigation
467
+ (including a cross-claim or counterclaim in a lawsuit) alleging that
468
+ any patent claim is infringed by making, using, selling, offering for
469
+ sale, or importing the Program or any portion of it.
470
+
471
+ 11. Patents.
472
+
473
+ A "contributor" is a copyright holder who authorizes use under this
474
+ License of the Program or a work on which the Program is based. The
475
+ work thus licensed is called the contributor's "contributor version".
476
+
477
+ A contributor's "essential patent claims" are all patent claims
478
+ owned or controlled by the contributor, whether already acquired or
479
+ hereafter acquired, that would be infringed by some manner, permitted
480
+ by this License, of making, using, or selling its contributor version,
481
+ but do not include claims that would be infringed only as a
482
+ consequence of further modification of the contributor version. For
483
+ purposes of this definition, "control" includes the right to grant
484
+ patent sublicenses in a manner consistent with the requirements of
485
+ this License.
486
+
487
+ Each contributor grants you a non-exclusive, worldwide, royalty-free
488
+ patent license under the contributor's essential patent claims, to
489
+ make, use, sell, offer for sale, import and otherwise run, modify and
490
+ propagate the contents of its contributor version.
491
+
492
+ In the following three paragraphs, a "patent license" is any express
493
+ agreement or commitment, however denominated, not to enforce a patent
494
+ (such as an express permission to practice a patent or covenant not to
495
+ sue for patent infringement). To "grant" such a patent license to a
496
+ party means to make such an agreement or commitment not to enforce a
497
+ patent against the party.
498
+
499
+ If you convey a covered work, knowingly relying on a patent license,
500
+ and the Corresponding Source of the work is not available for anyone
501
+ to copy, free of charge and under the terms of this License, through a
502
+ publicly available network server or other readily accessible means,
503
+ then you must either (1) cause the Corresponding Source to be so
504
+ available, or (2) arrange to deprive yourself of the benefit of the
505
+ patent license for this particular work, or (3) arrange, in a manner
506
+ consistent with the requirements of this License, to extend the patent
507
+ license to downstream recipients. "Knowingly relying" means you have
508
+ actual knowledge that, but for the patent license, your conveying the
509
+ covered work in a country, or your recipient's use of the covered work
510
+ in a country, would infringe one or more identifiable patents in that
511
+ country that you have reason to believe are valid.
512
+
513
+ If, pursuant to or in connection with a single transaction or
514
+ arrangement, you convey, or propagate by procuring conveyance of, a
515
+ covered work, and grant a patent license to some of the parties
516
+ receiving the covered work authorizing them to use, propagate, modify
517
+ or convey a specific copy of the covered work, then the patent license
518
+ you grant is automatically extended to all recipients of the covered
519
+ work and works based on it.
520
+
521
+ A patent license is "discriminatory" if it does not include within
522
+ the scope of its coverage, prohibits the exercise of, or is
523
+ conditioned on the non-exercise of one or more of the rights that are
524
+ specifically granted under this License. You may not convey a covered
525
+ work if you are a party to an arrangement with a third party that is
526
+ in the business of distributing software, under which you make payment
527
+ to the third party based on the extent of your activity of conveying
528
+ the work, and under which the third party grants, to any of the
529
+ parties who would receive the covered work from you, a discriminatory
530
+ patent license (a) in connection with copies of the covered work
531
+ conveyed by you (or copies made from those copies), or (b) primarily
532
+ for and in connection with specific products or compilations that
533
+ contain the covered work, unless you entered into that arrangement,
534
+ or that patent license was granted, prior to 28 March 2007.
535
+
536
+ Nothing in this License shall be construed as excluding or limiting
537
+ any implied license or other defenses to infringement that may
538
+ otherwise be available to you under applicable patent law.
539
+
540
+ 12. No Surrender of Others' Freedom.
541
+
542
+ If conditions are imposed on you (whether by court order, agreement or
543
+ otherwise) that contradict the conditions of this License, they do not
544
+ excuse you from the conditions of this License. If you cannot convey a
545
+ covered work so as to satisfy simultaneously your obligations under this
546
+ License and any other pertinent obligations, then as a consequence you may
547
+ not convey it at all. For example, if you agree to terms that obligate you
548
+ to collect a royalty for further conveying from those to whom you convey
549
+ the Program, the only way you could satisfy both those terms and this
550
+ License would be to refrain entirely from conveying the Program.
551
+
552
+ 13. Use with the GNU Affero General Public License.
553
+
554
+ Notwithstanding any other provision of this License, you have
555
+ permission to link or combine any covered work with a work licensed
556
+ under version 3 of the GNU Affero General Public License into a single
557
+ combined work, and to convey the resulting work. The terms of this
558
+ License will continue to apply to the part which is the covered work,
559
+ but the special requirements of the GNU Affero General Public License,
560
+ section 13, concerning interaction through a network will apply to the
561
+ combination as such.
562
+
563
+ 14. Revised Versions of this License.
564
+
565
+ The Free Software Foundation may publish revised and/or new versions of
566
+ the GNU General Public License from time to time. Such new versions will
567
+ be similar in spirit to the present version, but may differ in detail to
568
+ address new problems or concerns.
569
+
570
+ Each version is given a distinguishing version number. If the
571
+ Program specifies that a certain numbered version of the GNU General
572
+ Public License "or any later version" applies to it, you have the
573
+ option of following the terms and conditions either of that numbered
574
+ version or of any later version published by the Free Software
575
+ Foundation. If the Program does not specify a version number of the
576
+ GNU General Public License, you may choose any version ever published
577
+ by the Free Software Foundation.
578
+
579
+ If the Program specifies that a proxy can decide which future
580
+ versions of the GNU General Public License can be used, that proxy's
581
+ public statement of acceptance of a version permanently authorizes you
582
+ to choose that version for the Program.
583
+
584
+ Later license versions may give you additional or different
585
+ permissions. However, no additional obligations are imposed on any
586
+ author or copyright holder as a result of your choosing to follow a
587
+ later version.
588
+
589
+ 15. Disclaimer of Warranty.
590
+
591
+ THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592
+ APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593
+ HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594
+ OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595
+ THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596
+ PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597
+ IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598
+ ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599
+
600
+ 16. Limitation of Liability.
601
+
602
+ IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603
+ WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604
+ THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605
+ GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606
+ USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607
+ DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608
+ PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609
+ EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610
+ SUCH DAMAGES.
611
+
612
+ 17. Interpretation of Sections 15 and 16.
613
+
614
+ If the disclaimer of warranty and limitation of liability provided
615
+ above cannot be given local legal effect according to their terms,
616
+ reviewing courts shall apply local law that most closely approximates
617
+ an absolute waiver of all civil liability in connection with the
618
+ Program, unless a warranty or assumption of liability accompanies a
619
+ copy of the Program in return for a fee.
620
+
621
+ END OF TERMS AND CONDITIONS
622
+
623
+ How to Apply These Terms to Your New Programs
624
+
625
+ If you develop a new program, and you want it to be of the greatest
626
+ possible use to the public, the best way to achieve this is to make it
627
+ free software which everyone can redistribute and change under these terms.
628
+
629
+ To do so, attach the following notices to the program. It is safest
630
+ to attach them to the start of each source file to most effectively
631
+ state the exclusion of warranty; and each file should have at least
632
+ the "copyright" line and a pointer to where the full notice is found.
633
+
634
+ {one line to give the program's name and a brief idea of what it does.}
635
+ Copyright (C) {year} {name of author}
636
+
637
+ This program is free software: you can redistribute it and/or modify
638
+ it under the terms of the GNU General Public License as published by
639
+ the Free Software Foundation, either version 3 of the License, or
640
+ (at your option) any later version.
641
+
642
+ This program is distributed in the hope that it will be useful,
643
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
644
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645
+ GNU General Public License for more details.
646
+
647
+ You should have received a copy of the GNU General Public License
648
+ along with this program. If not, see <http://www.gnu.org/licenses/>.
649
+
650
+ Also add information on how to contact you by electronic and paper mail.
651
+
652
+ If the program does terminal interaction, make it output a short
653
+ notice like this when it starts in an interactive mode:
654
+
655
+ {project} Copyright (C) {year} {fullname}
656
+ This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657
+ This is free software, and you are welcome to redistribute it
658
+ under certain conditions; type `show c' for details.
659
+
660
+ The hypothetical commands `show w' and `show c' should show the appropriate
661
+ parts of the General Public License. Of course, your program's commands
662
+ might be different; for a GUI interface, you would use an "about box".
663
+
664
+ You should also get your employer (if you work as a programmer) or school,
665
+ if any, to sign a "copyright disclaimer" for the program, if necessary.
666
+ For more information on this, and how to apply and follow the GNU GPL, see
667
+ <http://www.gnu.org/licenses/>.
668
+
669
+ The GNU General Public License does not permit incorporating your program
670
+ into proprietary programs. If your program is a subroutine library, you
671
+ may consider it more useful to permit linking proprietary applications with
672
+ the library. If this is what you want to do, use the GNU Lesser General
673
+ Public License instead of this License. But first, please read
674
+ <http://www.gnu.org/philosophy/why-not-lgpl.html>.
data/assets/demo-cli.gif ADDED

Git LFS Details

  • SHA256: 809f06b74f1007416eeb291fe29f192d0f883b34626803737b1b0c600c7eecae
  • Pointer size: 131 Bytes
  • Size of remote file: 266 kB
data/assets/icons/16x16.png ADDED

Git LFS Details

  • SHA256: b21778f637a362f74920553deb1043fd8718c5645364af7ddfd8a204efdaf5ac
  • Pointer size: 128 Bytes
  • Size of remote file: 764 Bytes
data/assets/icons/32x32.png ADDED

Git LFS Details

  • SHA256: e5e4a3837b6aec28c185ebd66fb601264f51307e9ebc9d636e559b08b1dfa2df
  • Pointer size: 129 Bytes
  • Size of remote file: 1.48 kB
data/assets/icons/64x64.png ADDED

Git LFS Details

  • SHA256: 72a5e9c5ad0bf1578f3393cd202df35dbfdbf36365e876314e2aed22f36f3389
  • Pointer size: 129 Bytes
  • Size of remote file: 3.23 kB
data/bin/visma ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ if __name__ == "__main__":
4
+ from visma.main import initGUI
5
+ initGUI()
data/main.py ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from cmd import Cmd
3
+ from visma.gui.cli import commandExec
4
+ from visma.gui.window import initGUI
5
+ from visma.gui import logger
6
+
7
+
8
+ def init():
9
+ open(os.path.abspath("log.txt"), "w").close()
10
+ logger.setLevel(10)
11
+ logger.setLogName('main')
12
+ logger.info('Initialising VisMa...(currently in CLI mode)')
13
+
14
+ class VisMa_Prompt(Cmd):
15
+ '''This inititates the main VisMa Prompt from where user may move to CLI/GUI'''
16
+
17
+ userManual = "|_________________________________________________________________________________________________|\n"\
18
+ "| gui ->> opens Visma in GUI mode. |\n"\
19
+ "| Ctrl + D ->> Closes the prompt. |\n"\
20
+ "| exit ->> Closes the prompt. |\n"\
21
+ "|-------------------------------------------------------------------------------------------------|\n"\
22
+ "| simplify( equation or expression ) ->> Simplifies the given equation. |\n"\
23
+ "| addition( equation or expression ) ->> Adds the elements used. |\n"\
24
+ "| subtraction( equation or expression ) ->> Subtracts the elements used. |\n"\
25
+ "| multiplication( equation or expression ) ->> Multiplies the elements used. |\n"\
26
+ "| division( equation or expression ) ->> Divides the elements used. |\n"\
27
+ "|-------------------------------------------------------------------------------------------------|\n"\
28
+ "| factorize( expression ) ->> Factorizes the expression. |\n"\
29
+ "| find-roots( equation ) ->> Solves the quadratic equation for the variable in the equation. |\n"\
30
+ "| solve( equation , variable ) ->> Solves the equation for the given variable. |\n"\
31
+ "|-------------------------------------------------------------------------------------------------|\n"\
32
+ "| integrate( expression , variable ) ->> Integrates the expression by the given variable. |\n"\
33
+ "| differentiate( expression , variable ) ->> Differentiates the expression by the given variable. |\n"\
34
+ "|_________________________________________________________________________________________________|\n"\
35
+
36
+ prompt = '>>> '
37
+ intro = "Welcome! This is Visual Maths Interactive Shell...\n" + "type 'help' for a User Manual and Ctrl + D to Exit prompt\n"
38
+
39
+ def do_exit(self, inp):
40
+ '''Exits VisMa Prompt'''
41
+ print("Exiting VisMa...")
42
+ logger.info('Exiting VisMa...')
43
+ return True
44
+
45
+ def emptyline(self):
46
+ logger.error('Empty line received as input')
47
+ print('Empty line received as input\n')
48
+
49
+ def do_manual(self, inp):
50
+ '''Displays a list of commands that can be used'''
51
+ print(self.userManual)
52
+
53
+ def do_gui(self, inp):
54
+ '''Starts GUI of VisMa'''
55
+ initGUI()
56
+ print("Initiating GUI...")
57
+ logger.info("Initiating GUI...")
58
+
59
+ def default(self, inp):
60
+ '''Directs to CommandExec and performs operations thereafter'''
61
+ try:
62
+ commandExec(inp)
63
+ except Exception:
64
+ logger.error('Invalid Expression: ' + inp)
65
+ print('Invalid Expression: ' + inp + '\n')
66
+
67
+ do_EOF = do_exit
68
+
69
+ VisMa_Prompt().cmdloop()
70
+
71
+
72
+ if __name__ == '__main__':
73
+ init()
data/requirements.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ # required
2
+ matplotlib>=2.0.0
3
+ numpy>=1.12
4
+ PyQt5>=5
5
+ PyQtWebEngine>=5.12
6
+
7
+ # for testing
8
+ pylama
9
+ pytest>=3.5
10
+ coverage>=4.0
data/run ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ from __future__ import print_function
4
+ import sys
5
+ import subprocess
6
+ import threading
7
+ import glob
8
+
9
+
10
+ def Str(value):
11
+ if isinstance(value, list):
12
+ return " ".join(value)
13
+ if isinstance(value, basestring):
14
+ return value
15
+ return str(value)
16
+
17
+
18
+ def Glob(value):
19
+ ret = glob.glob(value)
20
+ if(len(ret) < 1):
21
+ ret = [value]
22
+ return ret
23
+
24
+
25
+ for i in range(4-len(sys.argv)):
26
+ sys.argv.append("")
27
+
28
+ if(str(sys.argv[1]) == ""):
29
+ print("")
30
+ print("Enter command arguments with run")
31
+ print(" ./run install - Install all dependencies for visma")
32
+ print(" ./run visma - Open visma GUI")
33
+ print(" ./run test - Run all the tests and generates coverage report")
34
+ print(" ./run test path/to/test_file.py - Runs all tests and shows coverage for given file")
35
+ print(" ./run test syntax - Run syntax test using pylama")
36
+ print(" ./run test modules - Run tests using pytest for all modules")
37
+ print(" ./run test coverage - After running all the tests, open coverage report")
38
+ print(" ./run pack - Generate builds for visma package")
39
+ print(" ./run pack upload - Generate builds and then upload to test.pypi.org")
40
+ print(" ./run pack final - Generate builds and upload final build to pypi.org")
41
+ print(" ./run clean - Clean all cache, reports and builds")
42
+ print("")
43
+
44
+ elif (str(sys.argv[1]) == "install"):
45
+ subprocess.call("python3 -m pip install -r requirements.txt", shell=True)
46
+
47
+ elif (str(sys.argv[1]) == "visma"):
48
+ subprocess.call("python3 main.py", shell=True)
49
+
50
+ elif str(sys.argv[1]) == "test":
51
+ if str(sys.argv[2]) == "syntax" or str(sys.argv[2]) == "":
52
+ print("Python Syntax Test ...")
53
+ subprocess.call("pylama", shell=True)
54
+ elif (str(sys.argv[2]) == "modules"):
55
+ print("Python Modules Test ...")
56
+ subprocess.call("pytest", shell=True)
57
+
58
+ if str(sys.argv[2]) != "" and str(sys.argv[2]) != "coverage" and str(sys.argv[2]) != "syntax" and str(sys.argv[2]) != "modules":
59
+ print("Python Test for " + str(sys.argv[2]) + " ...")
60
+ subprocess.call("coverage run --source ./ -m pytest " + str(sys.argv[2]) + " -v", shell=True)
61
+
62
+ elif str(sys.argv[2]) == "":
63
+ print("Python Modules Test with Coverage ...")
64
+ subprocess.call("coverage run --source ./ -m pytest -v", shell=True)
65
+
66
+ if str(sys.argv[2]) == "" or str(sys.argv[2]) == "coverage" or str(sys.argv[3]) == "coverage":
67
+ subprocess.call("coverage report", shell=True)
68
+ subprocess.call("coverage html", shell=True)
69
+
70
+ if str(sys.argv[2]) == "coverage" or str(sys.argv[3]) == "coverage":
71
+ def thread1():
72
+ subprocess.call("nohup xdg-open ./htmlcov/index.html", shell=True)
73
+ threading.Thread(target=thread1).start()
74
+
75
+ elif str(sys.argv[1]) == "pack":
76
+ subprocess.call("mv main.py visma", shell=True)
77
+ subprocess.call("python3 setup.py sdist bdist_wheel", shell=True)
78
+ subprocess.call("mv ./visma/main.py ./", shell=True)
79
+
80
+ if str(sys.argv[2]) == "upload":
81
+ subprocess.call("twine upload --repository-url https://test.pypi.org/legacy/", Str(Glob("dist/*")), shell=True)
82
+ elif str(sys.argv[2]) == "final":
83
+ subprocess.call("twine upload", Str(Glob("dist/*")), shell=True)
84
+
85
+ elif str(sys.argv[1]) == "clean":
86
+ subprocess.call("git clean -xdf", shell=True)
87
+
88
+ else:
89
+ print("Invalid arguments")
data/setup.cfg ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [pylama]
2
+ ignore = C901,E0602,E501,W605
3
+ # C901: 'xyz' is too complex
4
+ # E0602: undefined name 'xyz'
5
+ # E501: E501 line too long (> 79 chars)
6
+ # W605: Invalid escape sequence
7
+
8
+ [tool:pytest]
9
+
10
+ [coverage:run]
11
+ omit = main.py, setup.py, */__init__.py, visma/gui/*, visma/testbed/*, run
12
+
13
+ [coverage:report]
14
+ omit = main.py, setup.py, */__init__.py, visma/gui/*, visma/testbed/*, run
data/setup.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import setuptools
2
+
3
+ with open("README.md", "r") as fh:
4
+ long_description = fh.read()
5
+
6
+ setuptools.setup(
7
+ name="VISualMAth",
8
+ description="visma - VISual MAth : A math equation solver and visualizer",
9
+ version="1.0.0.0",
10
+ author="Siddharth Kothiyal, Shantanu Mishra, Mayank Dhiman",
11
12
+ long_description=long_description,
13
+ long_description_content_type="text/markdown",
14
+ url="https://github.com/aerospaceresearch/visma",
15
+ project_urls={
16
+ 'Documentation': 'https://github.com/aerospaceresearch/visma/wiki',
17
+ 'Source': 'https://github.com/aerospaceresearch/visma',
18
+ 'Issues': 'https://github.com/aerospaceresearch/visma/issues',
19
+ 'Chat': 'https://gitter.im/aerospaceresearch/visma'
20
+ },
21
+ packages=setuptools.find_packages(),
22
+ scripts=['bin/visma'],
23
+ classifiers=(
24
+ "Programming Language :: Python :: 3",
25
+ "Programming Language :: Python :: 3.4",
26
+ "Programming Language :: Python :: 3.5",
27
+ "Programming Language :: Python :: 3.6",
28
+ "Programming Language :: Python :: 3.7",
29
+ "Operating System :: OS Independent",
30
+ "Topic :: Scientific/Engineering",
31
+ "Topic :: Scientific/Engineering :: Mathematics",
32
+ "Topic :: Scientific/Engineering :: Visualization",
33
+ "License :: OSI Approved :: GNU General Public License v3 (GPLv3)"
34
+ ),
35
+ python_requires='>=3',
36
+ install_requires=[
37
+ "PyQt5",
38
+ "matplotlib",
39
+ "numpy"
40
+ ],
41
+ tests_require=[
42
+ "pytest",
43
+ "coverage"
44
+ ]
45
+ )
data/tests/__init__.py ADDED
File without changes
data/tests/test_calculus.py ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from visma.calculus.differentiation import differentiate, differentiationProductRule
2
+ from visma.calculus.integration import integrate
3
+ from tests.tester import quickTest
4
+
5
+ ############################
6
+ # calculus.differentiation #
7
+ ############################
8
+
9
+
10
+ def test_differentiate():
11
+
12
+ assert quickTest("x^2 + x", differentiate, 'x') == "2.0x+1.0"
13
+
14
+ assert quickTest("x + 2y + 3z + 4", differentiate, 'x') == "1.0"
15
+ assert quickTest("x + 2y + 3z + 4", differentiate, 'y') == "2.0"
16
+ assert quickTest("x + 2y + 3z + 4", differentiate, 'z') == "3.0"
17
+
18
+ assert quickTest("xy + xy^2 + xyz", differentiate, 'x') == "y+y^(2.0)+yz"
19
+ assert quickTest("xy + xy^2 + xyz", differentiate, 'y') == "x+2.0xy+xz"
20
+ assert quickTest("xy + xy^2 + xyz", differentiate, 'z') == "xy"
21
+
22
+ assert quickTest("xy + z", differentiate, 'z') == "1.0"
23
+ assert quickTest("z + xy", differentiate, 'z') == "1.0"
24
+ assert quickTest("z - xy", differentiate, 'z') == "1.0"
25
+ assert quickTest("xy - z", differentiate, 'z') == "-1.0"
26
+
27
+ assert quickTest("sin(x)", differentiate, 'x') == "cos(x)*1.0"
28
+ assert quickTest("sin(x)", differentiate, 'y') == "0.0"
29
+ assert quickTest("sin(xxx)", differentiate, 'x') == "cos(x^(3.0))*3.0x^(2.0)"
30
+ assert quickTest("sin(log(xx))", differentiate, 'x') == "cos(log(x^(2.0)))*x^(-1.0)*2.0x"
31
+
32
+ assert quickTest("cos(x)", differentiate, 'x') == "-1.0*sin(x)*1.0"
33
+ assert quickTest("cos(x)", differentiate, 'y') == "0.0"
34
+ assert quickTest("cos(xxx)", differentiate, 'x') == "-1.0*sin(x^(3.0))*3.0x^(2.0)"
35
+ assert quickTest("cos(log(xx))", differentiate, 'x') == "-1.0*sin(log(x^(2.0)))*x^(-1.0)*2.0x"
36
+
37
+ assert quickTest("tan(x)", differentiate, 'x') == "sec(x)*1.0"
38
+ # FIXME: Simplify module simplifies sec^2(x) as sec(x) and cosec^2(x) as cosec(x), however differentiation modules give correct output
39
+ assert quickTest("tan(x)", differentiate, 'y') == "0.0"
40
+
41
+ assert quickTest("cot(x)", differentiate, 'x') == "-1.0*csc(x)*1.0"
42
+ # FIXME: Simplify module simplifies sec^2(x) as sec(x) and cosec^2(x) as cosec(x), however differentiation modules give correct output
43
+ assert quickTest("cot(x)", differentiate, 'y') == "0.0"
44
+
45
+ assert quickTest("csc(x)", differentiate, 'x') == "-1.0*csc(x)*cot(x)*1.0"
46
+ assert quickTest("csc(x)", differentiate, 'y') == "0.0"
47
+
48
+ assert quickTest("sec(x)", differentiate, 'x') == "sec(x)*tan(x)*1.0"
49
+ assert quickTest("sec(x)", differentiate, 'y') == "0.0"
50
+
51
+ assert quickTest("log(x)", differentiate, 'x') == "x^(-1.0)"
52
+ assert quickTest("log(xx)", differentiate, 'x') == "2.0"
53
+
54
+ # Tests for Product Rule of Differentiation.
55
+ assert quickTest("sin(x)*cos(x)", differentiationProductRule, 'x') == "(cos(x)*1.0)*cos(x)+sin(x)*(-1.0*sin(x)*1.0)"
56
+ assert quickTest("sin(x)*x", differentiationProductRule, 'x') == "(cos(x)*1.0)*x+sin(x)*(1.0)"
57
+ assert quickTest("sin(x)*y", differentiationProductRule, 'x') == "(cos(x)*1.0)*y+sin(x)*(0.0)"
58
+ assert quickTest("sin(x)*cos(x)*sec(x)", differentiationProductRule, 'x') == "(cos(x)*1.0)*cos(x)*sec(x)+sin(x)*(-1.0*sin(x)*1.0)*sec(x)+sin(x)*cos(x)*(sec(x)*tan(x)*1.0)"
59
+
60
+
61
+ ########################
62
+ # calculus.integration #
63
+ ########################
64
+
65
+
66
+ def test_integrate():
67
+
68
+ assert quickTest("x + 1", integrate, 'x') == "0.5x^(2.0)+x"
69
+
70
+ assert quickTest("xyz + xy/z + x + 1 + 1/x", integrate, 'x') == "0.5x^(2.0)yz+0.5x^(2.0)yz^(-1.0)+0.5x^(2.0)+x+1.0*log(x)" # FIXME(integration.py): Ignore coeff if 1
71
+ assert quickTest("xyz + xy/z + x + 1 + 1/x", integrate, 'y') == "0.5xy^(2.0)z+0.5xy^(2.0)z^(-1.0)+xy+y+x^(-1.0)y"
72
+ assert quickTest("xyz + xy/z + x + 1 + 1/x", integrate, 'z') == "0.5xyz^(2.0)+xy*log(z)+xz+z+x^(-1.0)z"
73
+
74
+ assert quickTest("sin(x)", integrate, 'x') == "-1.0*cos(x)"
75
+ assert quickTest("cos(x)", integrate, 'x') == "sin(x)"
76
+ assert quickTest("tan(x)", integrate, 'x') == "-1.0*ln(cos(x))"
77
+ assert quickTest("csc(x)", integrate, 'x') == "-1.0*ln((csc(x)+cot(x)))"
78
+ assert quickTest("sec(x)", integrate, 'x') == "ln((sec(x)+tan(x)))"
79
+ assert quickTest("cot(x)", integrate, 'x') == "ln(sin(x))"
data/tests/test_discrete.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from tests.tester import quickTest
2
+ from visma.discreteMaths.combinatorics import factorial, permutation, combination
3
+ from visma.discreteMaths.statistics import ArithemeticMean, Mode, Median
4
+
5
+
6
+ def test_factorial():
7
+
8
+ assert quickTest("5", factorial) == "120.0"
9
+ assert quickTest("0", factorial) == "1"
10
+ assert quickTest("11", factorial) == "39916800.0"
11
+ assert quickTest("11 - 11", factorial) == "1"
12
+
13
+
14
+ def test_permutation():
15
+
16
+ assert quickTest("5;2", permutation) == "20.0"
17
+ assert quickTest("12;3", permutation) == "1320.0"
18
+ assert quickTest("10 + 2;5 - 2", permutation) == "1320.0"
19
+ assert quickTest("11;11", permutation) == "39916800.0"
20
+
21
+
22
+ def test_combination():
23
+
24
+ assert quickTest("5;2", combination) == "10.0"
25
+ assert quickTest("2;2", permutation) == "2.0"
26
+ assert quickTest("11;0", permutation) == "1.0"
27
+ assert quickTest("11;11 - 11", permutation) == "1.0"
28
+
29
+
30
+ def test_statistics():
31
+
32
+ assert quickTest([12, 1, -12, -1, 0], ArithemeticMean) == "0.0"
33
+ assert quickTest([11, 1, -2, -1, 0], ArithemeticMean) == "1.8"
34
+
35
+ assert quickTest([12, 12, 12, 12, 1, -12, -1, 0], Mode) == "Mode=12;ModeFrequency=4"
36
+ assert quickTest([-1, -1, 2, 3, 4, 5, 6], Mode) == "Mode=-1;ModeFrequency=2"
37
+
38
+ assert quickTest([1, 2, 3, 4, 5], Median) == "3"
39
+ assert quickTest([1, 2, 3, 4, 5, 12], Median) == "3.5"
data/tests/test_functions.py ADDED
@@ -0,0 +1,281 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from visma.functions.constant import Constant
2
+ from visma.functions.variable import Variable
3
+ from visma.functions.structure import Expression
4
+ from visma.functions.operator import Plus, Minus
5
+ from visma.io.parser import tokensToString
6
+
7
+ ######################
8
+ # functions.constant #
9
+ ######################
10
+
11
+
12
+ def test_Constant():
13
+
14
+ # Tests for Calculus operations for Constant Class.
15
+
16
+ constant1 = Constant(10)
17
+ assert constant1.__str__() == "{10}"
18
+ constant1.differentiate()
19
+ assert constant1.value == 0
20
+
21
+ constant2 = Constant(5, 2)
22
+ constant2.integrate('x')
23
+ assert isinstance(constant2, Variable)
24
+ assert constant2.__str__() == "25{x}"
25
+
26
+ # Tests for Add/Sub operations (using Overloading) for Constant Class.
27
+
28
+ constant4 = Constant(2, 2)
29
+ constant5 = Constant(7)
30
+ constant3 = constant4 - constant5
31
+ assert constant3.__str__() == "{-3}"
32
+
33
+ constant4 = Constant(7, 2)
34
+ constant0 = Constant(5)
35
+ constant6 = constant4 - constant3 - constant5 + constant0
36
+ assert constant6.__str__() == "{50}"
37
+
38
+ constant0 = Constant(5, 2, 2)
39
+ constant2 = constant0
40
+ variable0 = Variable(5, 'X', 3)
41
+ summation0 = constant0 - variable0 + constant2
42
+ assert summation0.__str__() == "{({100}-5{X}^{3})}"
43
+
44
+ constant0 = Constant(5, 2, 2)
45
+ constant2 = constant0
46
+ variable0 = Variable(5, 'X', 3)
47
+ summation0 = constant0 + variable0 + constant2
48
+ assert summation0.__str__() == "{({100}+5{X}^{3})}"
49
+
50
+ var1 = Variable(3, 'x', 3)
51
+ const1 = Constant(5)
52
+ expr1 = Expression([var1, Minus(), const1])
53
+ constant2 = Constant(2, 2)
54
+ sub1 = constant2 - expr1
55
+ assert sub1.__str__() == "{({9}-3{x}^{3})}"
56
+
57
+ constant1 = Constant(2)
58
+ constant2 = Constant(7)
59
+ constant3 = constant1 + constant2
60
+ assert constant3.__str__() == "{9}"
61
+
62
+ constant1 = Constant(2)
63
+ constant2 = Constant(7)
64
+ constant3 = constant1 - constant2
65
+ assert constant3.__str__() == "{-5}"
66
+
67
+ constant1 = Constant(5)
68
+ variable1 = Variable(5, 'x', 3)
69
+ summation = constant1 + variable1
70
+ assert summation.__str__() == "{({5}+5{x}^{3})}"
71
+
72
+ constant1 = Constant(5)
73
+ variable1 = Variable(5, 'x', 3)
74
+ summation = constant1 - variable1
75
+ assert summation.__str__() == "{({5}-5{x}^{3})}"
76
+
77
+ # Tests for Add/Sub operations (using Overloading) for Constant Class.
78
+
79
+ constant0 = Constant(0, 2)
80
+ constant1 = Constant(5)
81
+ mul1 = constant0 * constant1
82
+ assert mul1.calculate() == 0
83
+ mul1 = constant1 * constant0
84
+ assert mul1.calculate() == 0
85
+ mul1 = constant1 * constant1 + constant0 * constant1 + constant0 * constant1
86
+ assert mul1.calculate() == 25
87
+
88
+ constant1 = Constant(5, 2)
89
+ constant2 = Constant(4, 2)
90
+ variable0 = Variable(3, 'X', 3)
91
+ mul3 = constant1 * (constant2 + variable0)
92
+ assert mul3.__str__() == "{({400}+75{X}^{3})}"
93
+
94
+ constant1 = Constant(5, 2)
95
+ constant2 = Constant(4, 2)
96
+ variable0 = Variable(3, 'X', 3)
97
+ mul3 = constant1 / (constant2 + variable0)
98
+ assert mul3.__str__() == "{25}*{({16}+3{X}^{3})}^{-1}"
99
+
100
+ constant1 = Constant(5)
101
+ constant2 = Constant(4)
102
+ div1 = constant1 / constant2
103
+ assert div1.__str__() == "{1.25}"
104
+
105
+ constant1 = Constant(3, 2)
106
+ constant2 = Constant(4, 2)
107
+ variable0 = Variable(3, 'X', 3)
108
+ mul3 = constant1 - constant1/(constant2/variable0 + constant1)
109
+ assert mul3.__str__() == "{({9}-{9}*{(5.333333333333333{X}^{-3}+{9})}^{-1})}"
110
+
111
+ constant1 = Constant(2, 2)
112
+ constant2 = Constant(2, 2)
113
+ mul3 = constant1 ** constant2
114
+ assert mul3.__str__() == "{256}"
115
+
116
+ constant1 = Constant(5)
117
+ constant2 = Constant(5)
118
+ summation = constant1 * constant2
119
+ assert summation.__str__() == "{25}"
120
+
121
+ constant1 = Constant(5)
122
+ variable1 = Variable(5, 'x', 3)
123
+ exp1 = Expression([constant1, Plus(), variable1])
124
+ constant2 = Constant(10)
125
+ summation = constant2 + exp1
126
+ assert summation.__str__() == "{({15}+5{x}^{3})}"
127
+
128
+ constant1 = Constant(5)
129
+ variable1 = Variable(5, 'x', 3)
130
+ exp1 = Expression([constant1, Plus(), variable1])
131
+ constant2 = Constant(10)
132
+ summation = constant2 - exp1
133
+ assert summation.__str__() == "{({5}-5{x}^{3})}"
134
+
135
+ constant1 = Constant(5)
136
+ variable1 = Variable(5, 'x', 3)
137
+ exp1 = Expression([constant1, Plus(), variable1])
138
+ constant2 = Constant(10)
139
+ summation = exp1 - constant2
140
+ assert summation.__str__() == "{({-5}+5{x}^{3})}"
141
+
142
+ constant1 = Constant(5)
143
+ variable1 = Variable(5, 'x', 3)
144
+ summation = constant1 * variable1
145
+ assert summation.__str__() == "25{x}^{3}"
146
+
147
+ constant1 = Constant(5)
148
+ variable1 = Variable(5, 'x', 3)
149
+ exp1 = Expression([constant1, Plus(), variable1])
150
+ constant2 = Constant(10)
151
+ summation = constant2 * exp1
152
+ assert summation.__str__() == "{({50}+50{x}^{3})}"
153
+
154
+ constant1 = Constant(5)
155
+ constant2 = Constant(5)
156
+ summation = constant1 / constant2
157
+ assert summation.__str__() == "{1.0}"
158
+
159
+ constant1 = Constant(5)
160
+ variable1 = Variable(5, 'x', 3)
161
+ summation = constant1 / variable1
162
+ assert summation.__str__() == "{x}^{-3}"
163
+
164
+ constant1 = Constant(5)
165
+ variable1 = Variable(5, 'x', 3)
166
+ exp1 = Expression([constant1, Plus(), variable1])
167
+ constant2 = Constant(10)
168
+ summation = constant2 / exp1
169
+ assert summation.__str__() == "{10}*{({5}+5{x}^{3})}^{-1}"
170
+
171
+ constant1 = Constant(5)
172
+ variable1 = Variable(5, 'x', 3)
173
+ exp1 = Expression([constant1, Plus(), variable1])
174
+ constant2 = Constant(10)
175
+ summation = exp1 / constant2
176
+ assert summation.__str__() == "{({0.5}+0.5{x}^{3})}"
177
+
178
+
179
+ ######################
180
+ # functions.variable #
181
+ ######################
182
+
183
+
184
+ def test_Variable():
185
+
186
+ variable1 = Variable(2, 'x', 3)
187
+ assert variable1.__str__() == "2{x}^{3}"
188
+ variable1, _ = variable1.integrate('x')
189
+ assert variable1.__str__() == "0.5{x}^{4}"
190
+
191
+ constant = Constant(3)
192
+ variable = Variable(2, 'x', 3)
193
+ add = variable + constant
194
+ assert add.__str__() == "{(2{x}^{3}+{3})}"
195
+
196
+ variable1 = Variable(2, 'x', 3)
197
+ variable2 = Variable(4, 'x', 3)
198
+ add1 = variable1 + variable2
199
+ assert add1.__str__() == "6{x}^{3}"
200
+
201
+ variable1 = Variable(2, 'x', 3)
202
+ constant = Constant(3)
203
+ exp1 = Expression([variable1, Plus(), constant])
204
+ variable2 = Variable(4, 'x', 3)
205
+ add2 = variable2 + exp1
206
+ assert add2.__str__() == "{(6{x}^{3}+{3})}"
207
+
208
+ variable1 = Variable(2, 'x', 3)
209
+ constant = Constant(3)
210
+ exp1 = variable1 + constant
211
+ variable2 = Variable(4, 'x', 3)
212
+ add2 = variable2 - exp1
213
+ assert add2.__str__() == "{(2{x}^{3}-{3})}"
214
+
215
+ variable1 = Variable(2, 'x', 3)
216
+ constant = Constant(3)
217
+ exp1 = Expression([variable1, Plus(), constant])
218
+ variable2 = Variable(4, 'x', 3)
219
+ add2 = exp1 - variable2
220
+ assert add2.__str__() == "{(-2{x}^{3}+{3})}"
221
+
222
+ constant = Constant(3)
223
+ variable = Variable(2, 'x', 3)
224
+ add = variable - constant
225
+ assert add.__str__() == "{(2{x}^{3}-{3})}"
226
+
227
+ variable1 = Variable(2, 'x', 3)
228
+ variable2 = Variable(4, 'x', 3)
229
+ variable3 = Variable(2, 'x', 4)
230
+ variable4 = Variable(2, 'x', 3)
231
+ add1 = variable1 - variable2
232
+ add2 = variable3 - variable4
233
+ assert add1.__str__() == "-2{x}^{3}"
234
+ assert add2.__str__() == "{(2{x}^{4}-2{x}^{3})}"
235
+
236
+ constant = Constant(3)
237
+ variable = Variable(2, 'x', 3)
238
+ add = variable * constant
239
+ assert add.__str__() == "6{x}^{3}"
240
+
241
+ variable1 = Variable(2, 'x', 3)
242
+ variable2 = Variable(4, 'x', 3)
243
+ add2 = variable1 * variable2
244
+ assert add2.__str__() == "8{x}^{6}"
245
+
246
+ variable1 = Variable(2, 'x', 3)
247
+ variable2 = Variable(4, 'y', 3)
248
+ add2 = variable1 * variable2
249
+ assert add2.__str__() == "8{x}^{3}{y}^{3}"
250
+
251
+ variable1 = Variable(2, 'x', 3)
252
+ variable2 = Variable(4, 'y', 4)
253
+ add1 = variable1 / variable2
254
+ assert add1.__str__() == "0.5{x}^{3}{y}^{-4}"
255
+
256
+ variable1 = Variable(2, 'x', 3)
257
+ constant = Constant(3)
258
+ exp1 = variable1 - constant
259
+ variable2 = Variable(4, 'x', 3)
260
+ add2 = variable2 / exp1
261
+ assert add2.__str__() == "{(4.0{x}^{3}*{(2{x}^{3}-{3})}^{-1})}"
262
+
263
+ variable1 = Variable(2, 'x', 3)
264
+ constant = Constant(3)
265
+ exp1 = variable1 - constant
266
+ variable2 = Variable(4, 'x', 3)
267
+ add2 = variable2 * exp1
268
+ assert add2.__str__() == "{(8{x}^{6}-12{x}^{3})}"
269
+
270
+ variable1 = Variable(2, 'x', 3)
271
+ constant1 = Constant(3)
272
+ exp1 = variable1 - constant1
273
+ variable2 = Variable(4, 'x', 3)
274
+ constant2 = Constant(4)
275
+ exp2 = variable2 - constant2
276
+ add2 = exp1 * exp2
277
+ assert add2.__str__() == "{({(8{x}^{6}-8{x}^{3})}-{(12{x}^{3}-{12})})}"
278
+
279
+ variable2 = Variable(3, 'x', -1)
280
+ variable2, _ = variable2.integrate('x')
281
+ assert tokensToString(variable2) == '3 * log(x)'
data/tests/test_io.py ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from visma.io.checks import getVariables, areTokensEqual, isTokenInToken
2
+ from visma.io.parser import tokensToString, tokensToLatex
3
+ from visma.io.tokenize import getTerms, normalize
4
+ from visma.functions.operator import Operator, Plus
5
+ from visma.functions.structure import Expression
6
+ from tests.tester import getTokens
7
+
8
+ #############
9
+ # io.checks #
10
+ #############
11
+
12
+
13
+ def test_getVariables():
14
+
15
+ varA = getTokens("x")
16
+ assert getVariables([varA]) == ['x']
17
+
18
+ varB = getTokens("xy+ xy^2 +yz^3")
19
+ assert getVariables(varB) == ['x', 'y', 'z']
20
+
21
+ varC = getTokens("x + sin(x) + cos(y) + tan(2*z)*2 + tanh(z) + e^2")
22
+ # FIXME: getVariables() in visma.io.checks
23
+ # varC = getTokens("x + sin(x) + cos(y) + tan(2*z)*2 + tanh(z) + e^2")
24
+ # assert getVariables(varC) == ['x', 'y', 'z']
25
+ assert getVariables(varC) == ['x']
26
+
27
+
28
+ def test_areTokensEqual():
29
+
30
+ varA = getTokens("3xy")
31
+ varB = getTokens("3yx")
32
+ varC = getTokens("3yz")
33
+ assert areTokensEqual(varA, varB)
34
+ assert not areTokensEqual(varA, varC)
35
+
36
+ opA = Operator()
37
+ opA.value = '+'
38
+ opB = Plus()
39
+ assert areTokensEqual(opA, opB)
40
+
41
+
42
+ def test_isTokenInToken():
43
+
44
+ varA = getTokens("x^3")
45
+ varB = getTokens("xy^2")
46
+ varC = Expression(getTokens("1 + w + x"))
47
+ varD = Expression(getTokens("w + y"))
48
+ assert isTokenInToken(varA, varB)
49
+ assert isTokenInToken(varA, varC)
50
+ assert not isTokenInToken(varA, varD)
51
+
52
+ varA = getTokens("xy^2")
53
+ varB = getTokens("x^(2)y^(4)z")
54
+ varC = getTokens("yx^0.5")
55
+ varD = getTokens("xy^(3)z")
56
+ varE = getTokens("2")
57
+ assert isTokenInToken(varA, varB)
58
+ assert isTokenInToken(varA, varC)
59
+ assert not isTokenInToken(varA, varD)
60
+ assert not isTokenInToken(varA, varE)
61
+
62
+
63
+ #############
64
+ # io.parser #
65
+ #############
66
+
67
+
68
+ def test_tokensToString():
69
+
70
+ # Matrix token to string
71
+ mat = getTokens("[1+x, 2; \
72
+ 3 , 4]")
73
+ assert tokensToString([mat]) == "[1.0 + x,2.0;3.0,4.0]"
74
+
75
+ mat = getTokens("[1+x, 2] + [1, y + z^2]")
76
+ assert tokensToString(mat) == "[1.0 + x,2.0] + [1.0,y + z^(2.0)]"
77
+
78
+
79
+ def test_tokensToLatex():
80
+
81
+ # Matrix token to latex
82
+ mat = getTokens("[1+x, 2; \
83
+ 3 , 4]")
84
+ assert tokensToLatex([mat]) == "\\begin{bmatrix}{1.0}+{x}&{2.0}\\\\{3.0}&{4.0}\\end{bmatrix}"
85
+
86
+ mat = getTokens("[1+x, 2] + [1, y + z^2]")
87
+ assert tokensToLatex(mat) == "\\begin{bmatrix}{1.0}+{x}&{2.0}\\end{bmatrix}+\\begin{bmatrix}{1.0}&{y}+{z}^{2.0}\\end{bmatrix}"
88
+
89
+
90
+ ###############
91
+ # io.tokenize #
92
+ ###############
93
+
94
+
95
+ def test_getTerms():
96
+
97
+ assert getTerms("1 + 2 * 3 - sqrt(2) / 5") == ['1', '+', '2', '*', '3', '-', 'sqrt', '(', '2', ')', '/', '5']
98
+ assert getTerms("x + x^2*y + y^2 + y/z = -z") == ['x', '+', 'x', '^', '2', '*', 'y', '+', 'y', '^', '2', '+', 'y', '/', 'z', '=', '-', 'z']
99
+
100
+ assert getTerms("sin^2(x) + cos^2(x) = 1") == ['sin', '^', '2', '(', 'x', ')', '+', 'cos', '^', '2', '(', 'x', ')', '=', '1']
101
+ assert getTerms("1 + tan^2(x) = sec^2(x)") == ['1', '+', 'tan', '^', '2', '(', 'x', ')', '=', 'sec', '^', '2', '(', 'x', ')']
102
+ assert getTerms("1 + cot^2(x) = csc^2(x)") == ['1', '+', 'cot', '^', '2', '(', 'x', ')', '=', 'csc', '^', '2', '(', 'x', ')']
103
+
104
+ assert getTerms("cosh^2(x)-sinh^2(x)=1") == ['cosh', '^', '2', '(', 'x', ')', '-', 'sinh', '^', '2', '(', 'x', ')', '=', '1']
105
+ assert getTerms("1 - tanh^2(x) = sech^2(x)") == ['1', '-', 'tanh', '^', '2', '(', 'x', ')', '=', 'sech', '^', '2', '(', 'x', ')']
106
+ assert getTerms("coth^2(x)-csch^2(x)=1") == ['coth', '^', '2', '(', 'x', ')', '-', 'csch', '^', '2', '(', 'x', ')', '=', '1']
107
+
108
+ assert getTerms("e = 2.71828") == ['exp', '=', '2.71828']
109
+ assert getTerms("log_10(100) = 2") == ['log_', '10', '(', '100', ')', '=', '2']
110
+ assert getTerms("ln(e) = 1") == ['ln', '(', 'exp', ')', '=', '1']
111
+ assert getTerms("e^(i*pi)=1") == ['exp', '^', '(', 'iota', '*', 'pi', ')', '=', '1']
112
+
113
+ assert getTerms("a = b") == ['a', '=', 'b']
114
+ assert getTerms("a < b") == ['a', '<', 'b']
115
+ assert getTerms("a > b") == ['a', '>', 'b']
116
+ assert getTerms("a <= b") == ['a', '<=', 'b']
117
+ assert getTerms("a >= b") == ['a', '>=', 'b']
118
+
119
+ assert getTerms("[1,0;0,1]") == ['[', '1', ',', '0', ';', '0', ',', '1', ']']
120
+ assert getTerms("2*[2,3;2,3]+[1,2;1,2]") == ['2', '*', '[', '2', ',', '3', ';', '2', ',', '3', ']', '+', '[', '1', ',', '2', ';', '1', ',', '2', ']']
121
+
122
+ assert getTerms(r"$\frac {3}{x}-\frac{x}{y}$") == ['$', 'frac', '{', '3', '}', '{', 'x', '}', '-', 'frac', '{', 'x', '}', '{', 'y', '}', '$']
123
+
124
+
125
+ def test_normalize():
126
+
127
+ assert normalize(['$', 'frac', '{', '3', '}', '{', 'x', '}', '-', 'frac', '{', 'x', '}', '{', 'y', '}', '$']) == ['$', '3', '/', 'x', '-', 'x', '/', 'y', '$']
data/tests/test_matrix.py ADDED
@@ -0,0 +1,409 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from visma.matrix.checks import isMatrix, dimCheck, multiplyCheck, isEqual
2
+ from visma.matrix.operations import simplifyMatrix, addMatrix, subMatrix, scalarAdd, scalarSub, scalarMult, scalarDiv, gauss_elim, row_echelon
3
+ from visma.matrix.structure import DiagMat, IdenMat
4
+ from visma.functions.constant import Constant
5
+ from tests.tester import getTokens
6
+ from visma.io.parser import tokensToString
7
+
8
+
9
+ ####################
10
+ # matrix.structure #
11
+ ####################
12
+
13
+
14
+ def test_strMatrix():
15
+
16
+ mat = getTokens("[1+x, 2; \
17
+ 3 , 4]")
18
+ assert mat.__str__() == "[{1.0}+{x},{2.0};{3.0},{4.0}]"
19
+
20
+
21
+ def test_traceMat():
22
+
23
+ mat = getTokens("[1, 2, 3; \
24
+ 3, 4, 7; \
25
+ 4, 6, 9]")
26
+ mat.isSquare()
27
+ trace = mat.traceMat()
28
+ assert tokensToString(trace) == "14.0"
29
+
30
+ mat = getTokens("[7, 5; \
31
+ 2, 0]")
32
+ mat.isSquare()
33
+ trace = mat.traceMat()
34
+ assert tokensToString(trace) == "7.0"
35
+
36
+
37
+ def test_isSquare():
38
+
39
+ mat = getTokens("[1, 0, 3; \
40
+ 2, 1, 2]")
41
+ assert not mat.isSquare()
42
+
43
+ mat = getTokens("[1, 2; \
44
+ x, z]")
45
+ assert mat.isSquare()
46
+
47
+ mat = getTokens("[1, 2; \
48
+ 1, 3; \
49
+ 1, 4]")
50
+ assert not mat.isSquare()
51
+
52
+
53
+ def test_transposeMat():
54
+ mat = getTokens("[1, 3; \
55
+ 2, 6]")
56
+ matTranspose = mat.transposeMat()
57
+ assert matTranspose.__str__() == "[{1.0},{2.0};{3.0},{6.0}]"
58
+
59
+ mat = getTokens("[5,8,2;\
60
+ 12,30,9;\
61
+ 4,17,7]")
62
+ matTranspose = mat.transposeMat()
63
+ assert matTranspose.__str__() == "[{5.0},{12.0},{4.0};{8.0},{30.0},{17.0};{2.0},{9.0},{7.0}]"
64
+
65
+ mat = getTokens("[5,8,2;\
66
+ 2,3,4]")
67
+ matTranspose = mat.transposeMat()
68
+ assert matTranspose.__str__() == "[{5.0},{2.0};{8.0},{3.0};{2.0},{4.0}]"
69
+
70
+ mat = getTokens("[1, 2; \
71
+ 3, 4]")
72
+ matTranspose = mat.transposeMat()
73
+ assert matTranspose.__str__() == "[{1.0},{3.0};{2.0},{4.0}]"
74
+
75
+
76
+ def test_isDiagonal():
77
+
78
+ mat = getTokens("[1, 0; \
79
+ 0, z]")
80
+ assert mat.isDiagonal()
81
+
82
+ mat = getTokens("[1+x, 0+y; \
83
+ 0, z]")
84
+ assert not mat.isDiagonal()
85
+
86
+ mat = getTokens("[1, 2; \
87
+ 1, 3; \
88
+ 1, 4]")
89
+ assert not mat.isDiagonal()
90
+
91
+ mat = DiagMat([3, 3], [[Constant(1)], [Constant(5)], [Constant(2)]])
92
+ assert mat.isDiagonal()
93
+
94
+ mat = IdenMat([2, 2])
95
+ assert mat.isDiagonal()
96
+
97
+
98
+ def test_isIdentity():
99
+
100
+ mat = getTokens("[1, 0; \
101
+ 0, 1]")
102
+ assert mat.isIdentity()
103
+
104
+ mat = getTokens("[1+x, 0+y; \
105
+ 0, 1]")
106
+ assert not mat.isIdentity()
107
+
108
+ mat = getTokens("[1, 2; \
109
+ 1, 3; \
110
+ 1, 4]")
111
+ assert not mat.isIdentity()
112
+
113
+
114
+ #################
115
+ # matrix.checks #
116
+ #################
117
+
118
+
119
+ def test_isMatrix():
120
+
121
+ mat = getTokens("[1, 2, 3; \
122
+ x, z, 3]")
123
+ assert isMatrix(mat)
124
+
125
+ mat = getTokens("[1, 2; \
126
+ 1, 3; \
127
+ 1]")
128
+ assert mat == [] # not a matrix; returns empty matrix
129
+
130
+
131
+ def test_dimCheck():
132
+
133
+ matA = getTokens("[2, x; \
134
+ 3, y]")
135
+ matB = getTokens("[1, 2, x; \
136
+ 2, 3, y]")
137
+ assert not dimCheck(matA, matB)
138
+
139
+ matA = getTokens("[2, x; \
140
+ 3, y]")
141
+ matB = getTokens("[1, 2; \
142
+ 2, 3]")
143
+ assert dimCheck(matA, matB)
144
+
145
+
146
+ def test_multiplyCheck():
147
+
148
+ matA = getTokens("[2, x; \
149
+ 3, y; \
150
+ 3, y]")
151
+ matB = getTokens("[2, x; \
152
+ 3, y]")
153
+ assert multiplyCheck(matA, matB)
154
+
155
+ matA = getTokens("[2, x, 1; \
156
+ 3, y, z]")
157
+ matB = getTokens("[1, 2; 2, 3]")
158
+ assert not multiplyCheck(matA, matB)
159
+
160
+
161
+ def test_isEqual():
162
+
163
+ matA = getTokens("[1, 2; \
164
+ x, z]")
165
+ matB = getTokens("[1, 2; \
166
+ x, z]")
167
+
168
+ assert isEqual(matA, matB)
169
+
170
+ matA = getTokens("[2, x, 1; \
171
+ 3, y, z]")
172
+ matB = getTokens("[1, 2; 2, 3]")
173
+ assert not isEqual(matA, matB)
174
+
175
+
176
+ #####################
177
+ # matrix.operations #
178
+ #####################
179
+
180
+
181
+ def test_simplifyMatrix():
182
+
183
+ mat = getTokens("[x + y + x, x^2 + x^2; \
184
+ 1 + 4/2 , z^3/z^2 ]")
185
+ matRes = simplifyMatrix(mat)
186
+ assert matRes.__str__() == "[2{x}+{y},2{x}^{2.0};{3.0},{z}]"
187
+
188
+ mat = getTokens("[1 + x^2 + 2]")
189
+ matRes = simplifyMatrix(mat)
190
+ assert matRes.__str__() == "[{3.0}+{x}^{2.0}]"
191
+
192
+
193
+ def test_addMatrix():
194
+
195
+ matA = getTokens("[2x + y, 2x]")
196
+ matB = getTokens("[-x, -x]")
197
+ matSum = addMatrix(matA, matB)
198
+ # assert matSum.__str__() == "[2{x}+{y}]" # BUG: Strange simplification for matSum
199
+
200
+ matA = getTokens("[ x , x^2; \
201
+ 3 + x^2, xy ]")
202
+ matB = getTokens("[ y + 1 , x^2; \
203
+ 2 - x^2, xy - 1 ]")
204
+ matSum = addMatrix(matA, matB)
205
+ assert matSum.__str__() == "[{x}+{y}+{1.0},2{x}^{2.0};{5.0},2{x}{y}-{1.0}]"
206
+
207
+
208
+ def test_subMatrix():
209
+
210
+ matA = getTokens("[y, 2x]")
211
+ matB = getTokens("[-x, -x]")
212
+ matSub = subMatrix(matA, matB)
213
+ assert matSub.__str__() == "[{y}--1.0{x},3.0{x}]"
214
+
215
+
216
+ def test_scalarAddMatrix():
217
+
218
+ mat = getTokens("[1, 2; \
219
+ 2, 1]")
220
+ const = 2
221
+ matSum = scalarAdd(const, mat)
222
+ assert matSum.__str__() == "[{3.0},{2.0};{2.0},{3.0}]"
223
+
224
+ mat = getTokens("[1, 2, 3;\
225
+ 4, 5, 6;\
226
+ 7, 8, 9]")
227
+ const = 3
228
+ matSum = scalarAdd(const, mat)
229
+ assert matSum.__str__() == "[{4.0},{2.0},{3.0};{4.0},{8.0},{6.0};{7.0},{8.0},{12.0}]"
230
+
231
+
232
+ def test_scalarSubMatrix():
233
+
234
+ mat = getTokens("[8,6;\
235
+ 1,9]")
236
+ const = 2
237
+ matSub = scalarSub(const, mat)
238
+ assert matSub.__str__() == "[{6.0},{6.0};{1.0},{7.0}]"
239
+
240
+ mat = getTokens("[5,8,2;\
241
+ 12,30,9;\
242
+ 4,17,7]")
243
+ const = 10
244
+ matSub = scalarSub(const, mat)
245
+ assert matSub.__str__() == "[{-5.0},{8.0},{2.0};{12.0},{20.0},{9.0};{4.0},{17.0},{-3.0}]"
246
+
247
+
248
+ def test_scalarMultMatrix():
249
+
250
+ mat = getTokens("[1, 2]")
251
+ const = 2
252
+ matSum = scalarMult(const, mat)
253
+ assert matSum.__str__() == "[{2.0},{4.0}]"
254
+
255
+ mat = getTokens("[2,4;\
256
+ -5,7]")
257
+ const = 2
258
+ matSum = scalarMult(const, mat)
259
+ assert matSum.__str__() == "[{4.0},{8.0};{-10.0},{14.0}]"
260
+
261
+
262
+ def test_scalarDivMatrix():
263
+
264
+ mat = getTokens("[4, 2]")
265
+ const = 2
266
+ matSum = scalarDiv(const, mat)
267
+ assert matSum.__str__() == "[{2.0},{1.0}]"
268
+
269
+ mat = getTokens("[48,36;\
270
+ 24,-3]")
271
+ const = 6
272
+ matSum = scalarDiv(const, mat)
273
+ assert matSum.__str__() == "[{8.0},{6.0};{4.0},{-0.5}]"
274
+
275
+
276
+ def test_multiplyMatrix():
277
+ """
278
+ # FIXME: Fixing addition fixes multiplication
279
+ matA = getTokens("[1, 0; 0, 1]")
280
+ matB = getTokens("[2; 3]")
281
+ matPro = multiplyMatrix(matA, matB)
282
+ # assert matPro.__str__() == ""
283
+
284
+ matA = getTokens("[1, 2; x, 2; 3, y]")
285
+ matB = getTokens("[2, x; 3, y]")
286
+ matPro = multiplyMatrix(matA, matB)
287
+ # assert matPro.__str__() == ""
288
+
289
+ matA = getTokens("[2, x, 1; \
290
+ 3, y, z]")
291
+ matB = getTokens("[1, 2; 2, 3; 5, 6]")
292
+ matPro = multiplyMatrix(matA, matB)
293
+ # assert matPro.__str__() == ""
294
+ """
295
+ pass
296
+
297
+
298
+ def test_determinant():
299
+ mat = getTokens('[1,2;3,4]')
300
+ if mat.isSquare():
301
+ a = ''
302
+ for i in mat.determinant():
303
+ a += i.__str__()
304
+ assert a == "{-2.0}"
305
+ mat = getTokens('[1,2,3;4,5,6;7,8,9]')
306
+ if mat.isSquare():
307
+ a = ''
308
+ for i in mat.determinant():
309
+ a += i.__str__()
310
+ assert a == "{0}"
311
+ mat = getTokens('[1]')
312
+ if mat.isSquare():
313
+ a = ''
314
+ for i in mat.determinant():
315
+ a += i.__str__()
316
+ assert a == "{1.0}"
317
+
318
+
319
+ def test_inverse():
320
+ mat = getTokens("[5, 7, 9;\
321
+ 4, 3, 8;\
322
+ 7, 5, 6]")
323
+ if mat.isSquare():
324
+ assert mat.inverse().__str__() == "[{-0.20977011494252873},{0.028735632183908046},{0.27586206896551724};{0.3023255813953489},{-0.3139534883720931},{-0.03779069767441861};{-0.009111617312072894},{0.22779043280182235},{-0.12300683371298407}]"
325
+
326
+ mat = getTokens("[4, 5;\
327
+ 7, 3]")
328
+ if mat.isSquare():
329
+ assert mat.inverse().__str__() == "[{-0.1301859799713877},{0.21745350500715305};{0.303951367781155},{-0.17325227963525833}]"
330
+
331
+ mat = getTokens("[4, 5, 6, 8;\
332
+ 3, 25, 4, 6;\
333
+ 5, 1, 8, 4;\
334
+ 1, 3, 5, 8]")
335
+ if mat.isSquare():
336
+ assert mat.inverse().__str__() == "[{0.49400000000000005},{-0.044000000000000004},{-0.08600000000000001},{-0.42400000000000004};{-0.057142857142857134},{0.049999999999999996},{0.014285714285714284},{0.0047619047619047615};{-0.40131578947368424},{0.03947368421052632},{0.25},{0.2565789473684211};{0.21321177223288548},{-0.03854766474728087},{-0.15067178502879078},{0.01599488163787588}]"
337
+
338
+ mat = getTokens("[1,1;1,1]")
339
+ if mat.isSquare():
340
+ assert mat.inverse().__str__() == "-1"
341
+
342
+
343
+ def test_cofactor():
344
+ mat = getTokens('[1,2;3,4]')
345
+ if mat.isSquare():
346
+ assert str(mat.cofactor()) == '[{4.0},{-3.0};{-2.0},{1.0}]'
347
+ mat = getTokens('[1,2,3;0,4,5;1,0,6]')
348
+ if mat.isSquare():
349
+ assert str(mat.cofactor()) == '[{24.0},{5.0},{-4.0};{-12.0},{3.0},{2.0};{-2.0},{-5.0},{4.0}]'
350
+ mat = getTokens('[1,2,3,4;5,6,7,8;9,10,11,12;13,14,15,16]')
351
+ if mat.isSquare():
352
+ assert str(mat.cofactor()) == '[{0},{0},{0},{0};{0},{0},{0},{0};{0},{0},{0},{0};{0},{0},{0},{0}]'
353
+
354
+
355
+ def test_echelon():
356
+ mat = getTokens("[1, 4, 2;\
357
+ 5, 7, 6;\
358
+ 2, 4, 9]")
359
+ assert row_echelon(mat).__str__() == "[{1.0},{4.0},{2.0};{0.0},{-13.0},{-4.0};{0.0},{0.0},{6.24}]"
360
+
361
+ mat = getTokens("[1, 2, 3, 1;\
362
+ 4, 5, 6, 1;\
363
+ 7, 8, 9, 2]")
364
+ assert row_echelon(mat).__str__() == "[{1.0},{2.0},{3.0},{1.0};{0.0},{-3.0},{-6.0},{-3.0};{0.0},{0.0},{0.0},{1.0}]"
365
+
366
+ mat = getTokens("[1, 2, 3, 1;\
367
+ 4, 5, 6, 1;\
368
+ 7, 8, 9, 1;\
369
+ 2, 3 ,1 ,4]")
370
+ assert row_echelon(mat).__str__() == "[{1.0},{2.0},{3.0},{1.0};{0.0},{-3.0},{-6.0},{-3.0};{0.0},{0.0},{-3.02},{2.99};{0.0},{0.0},{0.0},{0.0}]"
371
+
372
+ mat = getTokens("[6,2,8,26;\
373
+ 3,5,2,8;\
374
+ 0,8,2,-7]")
375
+ assert row_echelon(mat).__str__() == "[{6.0},{2.0},{8.0},{26.0};{0.0},{4.0},{-2.0},{-5.0};{0.0},{0.0},{6.0},{3.0}]"
376
+
377
+
378
+ def test_multi_variable_solve():
379
+ mat = getTokens("[1, 2, 3, 1;\
380
+ 4, 5, 6, 1;\
381
+ 7, 8, 2, 2]")
382
+ assert gauss_elim(mat).__str__() == "[{-1.14};{1.2799999999999998};{-0.14285714285714285}]"
383
+
384
+ mat = getTokens("[6,2,8,26;\
385
+ 3,5,2,8;\
386
+ 0,8,2,-7]")
387
+ assert gauss_elim(mat).__str__() == "[{4.0};{-1.0};{0.5}]"
388
+
389
+ #######################
390
+ # Operator Overloading
391
+ #######################
392
+
393
+
394
+ def test_addoverload():
395
+
396
+ matA = getTokens("[ x , x^2; \
397
+ 3 + x^2, xy ]")
398
+ matB = getTokens("[ y + 1 , x^2; \
399
+ 2 - x^2, xy - 1 ]")
400
+ matSum = matA + matB
401
+ assert matSum.__str__() == "[{x}+{y}+{1.0},2{x}^{2.0};{5.0},2{x}{y}-{1.0}]"
402
+
403
+
404
+ def test_suboverload():
405
+
406
+ matA = getTokens("[y, 2x]")
407
+ matB = getTokens("[-x, -x]")
408
+ matSub = matA - matB
409
+ assert matSub.__str__() == "[{y}--1.0{x},3.0{x}]"
data/tests/test_simplify.py ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from visma.simplify.simplify import simplify, simplifyEquation
2
+ from visma.simplify.addsub import addition, additionEquation, subtraction, subtractionEquation
3
+ from visma.simplify.muldiv import multiplication, division
4
+ from tests.tester import quickTest
5
+
6
+ #####################
7
+ # simplify.simplify #
8
+ #####################
9
+
10
+
11
+ def test_simplify():
12
+
13
+ assert quickTest("1 + 2 - 3", simplify) == "0"
14
+ assert quickTest("1 + 2 - 4", simplify) == "-1.0"
15
+ assert quickTest("0 + 0 + 1", simplify) == "1.0"
16
+ assert quickTest("0 + 0 + xyz", simplify) == "xyz"
17
+
18
+ assert quickTest("(2 + 3) * (4 + 5) * (6 + 7)", simplify) == "585.0"
19
+ assert quickTest("3 * (3 * (3 * ( 3 * 3)))", simplify) == "243.0"
20
+ assert quickTest("3 + (3 + (3 * 1))", simplify) == "9.0"
21
+ assert quickTest("3 - (1 - 3 - (1 + 2))", simplify) == "8.0"
22
+
23
+ assert quickTest("3*2 + 4*2 - 3*4", simplify) == "2.0"
24
+ assert quickTest("3*x + 4*x - 2*y", simplify) == "7.0x-2.0y"
25
+ assert quickTest("x*y + x*x + x*x^2 + x^2*x + x*y^2 + x^2*y", simplify) == "xy+x^(2)+2x^(3.0)+xy^(2.0)+x^(2.0)y"
26
+
27
+ assert quickTest("3/2 + 4/2 - 2/4", simplify) == "3.0"
28
+ assert quickTest("x/5 + x/4 - 2/y", simplify) == "0.45x-2.0y^(-1)"
29
+ assert quickTest("x/y + x/x + x/x^2 + x^2/x + x/y^2 + x^2/y + x + 1", simplify) == "xy^(-1)+x^(-1.0)+xy^(-2.0)+x^(2.0)y^(-1)+2.0x+2.0"
30
+
31
+ assert quickTest("1 + 2 = 3", simplifyEquation) == "=0" # FIXME: Vanishing zero
32
+ assert quickTest("1 + 2 = 4", simplifyEquation) == "-1.0=0"
33
+
34
+ assert quickTest("3*2 + 4*2 = 3*4", simplifyEquation) == "2.0=0"
35
+ assert quickTest("3*x = 4*x + 2*y", simplifyEquation) == "-x-2.0y=0"
36
+ assert quickTest("1 - 1 = 3*x + 4*x + 2*y", simplifyEquation) == "7.0x+2.0y=0"
37
+
38
+ assert quickTest("x = y --1 --x^2", simplifyEquation) == "x-y-1.0-x^(2.0)=0" # FIXME: Valid but silly input case
39
+
40
+ assert quickTest("4 = 3x - 4x - 1 + 2", simplifyEquation) == "3.0+x=0"
41
+ assert quickTest("z = x^2 - x + 1 - 2", simplifyEquation) == "z-x^(2.0)+x+1.0=0"
42
+ assert quickTest("x = -1 + 2", simplifyEquation) == "x+1.0-2.0=0" # FIXME: Further simplification required (simplification in RHS)
43
+ assert quickTest("x*y + x*x + x*x^2 = x^2*x + x*y^2 + x^2*y", simplifyEquation) == "xy+x^(2)-xy^(2.0)-x^(2.0)y=0"
44
+
45
+ assert quickTest("3/2 + 4/2 = 2/4", simplifyEquation) == "3.0=0"
46
+ assert quickTest("x/5 + x/4 = 2/y", simplifyEquation) == "0.45x-2.0y^(-1)=0"
47
+ assert quickTest("x/y + x/x + x/x^2 + x^2/x = x/y^2 + x^2/y + x - 1", simplifyEquation) == "xy^(-1)+2.0+x^(-1.0)-xy^(-2.0)-x^(2.0)y^(-1)=0"
48
+
49
+ # Tests regarding Expression used in equations
50
+ assert quickTest("(1 + 2) = ( 3 + 44)", simplifyEquation) == "-44.0=0"
51
+ assert quickTest("x = -1 * (z + 10)", simplifyEquation) == "x+z+10.0=0"
52
+ assert quickTest("x = 2*(z + q)", simplifyEquation) == "x-2.0z-2.0q=0"
53
+
54
+ # Tests regarding Expression Simplifications
55
+ assert quickTest("(x + 1) * (x + 1) * (x + 1)", simplify) == "x^(3.0)+3x^(2.0)+3x+1.0"
56
+ assert quickTest("(x + 1) * (x - 1) + (x + 2)", simplify) == "x^(2.0)+1.0+x"
57
+ assert quickTest("(x + 1) + (x - 1)", simplify) == "2x"
58
+ assert quickTest("(x + 1) * (x * (1 + x))", simplify) == "2x^(2.0)+x^(3.0)+x"
59
+ assert quickTest("(x + 1) * (x - 1) + (100 + 1)", simplify) == "x^(2.0)+100.0"
60
+ assert quickTest("((x + 1) * (x - 1) + (100 + 1))", simplify) == "x^(2.0)+100.0"
61
+ # assert quickTest("-1 * (- x - 1)", simplify) == "x--1" FIXME: case should have a probably fix with the overlaoding of Constant Function
62
+
63
+ # Tests regarding Exponents & Expressions
64
+ assert quickTest("(x + 1)^3", simplify) == "x^(3.0)+3x^(2.0)+3x+1.0"
65
+ assert quickTest("(x + 1)^2*x", simplify) == "x^(3.0)+2x^(2.0)+x"
66
+ assert quickTest("x*(x + 1)^2*x", simplify) == "x^(4.0)+2x^(3.0)+x^(2.0)"
67
+ assert quickTest("(x+1)^2*(x + 2)^3*x", simplify) == "x^(6.0)+8.0x^(5.0)+25.0x^(4.0)+38.0x^(3.0)+28.0x^(2.0)+8.0x"
68
+ assert quickTest("(x + 1)^(1 + 1)*x", simplify) == "x^(3.0)+2x^(2.0)+x"
69
+ assert quickTest("(x + 1)^(3 + 0 + 0)", simplify) == "x^(3.0)+3x^(2.0)+3x+1.0"
70
+
71
+ assert quickTest("3^(1 + 1)", simplify) == "9.0"
72
+ assert quickTest("2^(3/2) + 12", simplify) == "2.0^1.5+12.0"
73
+ assert quickTest("2^(4/2) + 12", simplify) == "16.0"
74
+ assert quickTest("(1 + 2)^(1 + 1)", simplify) == "9.0"
75
+ assert quickTest("(1 + 3)^(x) + (2 + 3)^(x)", simplify) == "4.0^x+5.0^x"
76
+ assert quickTest("(1 + 3)^(1/3) + (2 + 3)^(2/3)", simplify) == "4.0^0.33+5.0^0.67"
77
+
78
+
79
+ def test_addsub():
80
+
81
+ assert quickTest("1 + 2", addition) == "3.0"
82
+ assert quickTest("x + 2x", addition) == "3.0x"
83
+ assert quickTest("xy^2 + 2xy^2", addition) == "3.0xy^(2.0)"
84
+ assert quickTest("-1 + 2", addition) == "1.0"
85
+ assert quickTest("-x + 2x", addition) == "x"
86
+ assert quickTest("-xy^2 + 3xy^2", addition) == "2.0xy^(2.0)"
87
+ assert quickTest("1 + 0", addition) == "1.0"
88
+ assert quickTest("1 + 2 + 3", addition) == "6.0"
89
+ assert quickTest("1 + 2 + x + 3x", addition) == "3.0+4.0x"
90
+
91
+ assert quickTest("1 + 2 = x + 3x", additionEquation) == "3.0=4.0x"
92
+ assert quickTest("y + 2 = -x + x", additionEquation) == "y+2.0=0"
93
+
94
+ assert quickTest("1 - 2", subtraction) == "-1.0"
95
+ assert quickTest("x - 2x", subtraction) == "-x"
96
+ assert quickTest("xy^2 - 3xy^2", subtraction) == "-2.0xy^(2.0)"
97
+
98
+ assert quickTest("1 - 2 = x - 3x", subtractionEquation) == "-1.0=-2.0x"
99
+ assert quickTest("y + 2 = -x - x", subtractionEquation) == "y+2.0=-2.0x"
100
+
101
+
102
+ def test_muldiv():
103
+
104
+ assert quickTest("3*y + x*2", multiplication) == "3.0y+2.0x"
105
+ assert quickTest("x^3 * x^2", multiplication) == "x^(5.0)"
106
+ assert quickTest("x^(-1)y^2 * zx^2", multiplication) == "xy^(2.0)z"
107
+
108
+ assert quickTest("x^2 / x^2", division) == "1.0"
109
+ assert quickTest("x^2 / x^4", division) == "x^(-2.0)"
110
+ assert quickTest("x^(-1)y^2 / zx^2", division) == "x^(-3.0)y^(2.0)z^(-1)"
data/tests/test_solvers.py ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from visma.solvers.polynomial.roots import rootFinder
2
+ from visma.solvers.simulEqn import simulSolver
3
+ from visma.solvers.solve import solveFor
4
+ from tests.tester import quickTest
5
+
6
+ ############################
7
+ # solvers.polynomial.roots #
8
+ ############################
9
+
10
+
11
+ def test_rootFinder():
12
+
13
+ # Tests for Quadratic (2nd Degree) Equations
14
+ assert quickTest("x^2 + 2x + 1 = 0", rootFinder) == "(x+1.0)^(2)=0"
15
+ assert quickTest("x^2 + 2x = - 1", rootFinder) == "(x+1.0)^(2)=0"
16
+ assert quickTest("x^2 = - 2x - 1", rootFinder) == "(x+1.0)^(2)=0"
17
+ assert quickTest("0 = x^2 + 2x + 1", rootFinder) == "(x+1.0)^(2)=0"
18
+
19
+ assert quickTest("x^2 + 1 - 2x = 0", rootFinder) == "(x-1.0)^(2)=0"
20
+ assert quickTest("x^2 + 1 = 2x", rootFinder) == "(x-1.0)^(2)=0"
21
+ assert quickTest("x^2 = 2x - 1", rootFinder) == "(x-1.0)^(2)=0"
22
+ assert quickTest("-2x = - x^2 - 1", rootFinder) == "(x-1.0)^(2)=0"
23
+ # FIXME: assert quickTest("0 = 2x - x^2 - 1", rootFinder) == "(x-1.0)^(2)=0"
24
+ # assert quickTest("0 = 2x - x^2 - 1", rootFinder) == "(x-1.0)^(2)=0"
25
+
26
+ assert quickTest("2x^2 - 4x - 6 = 0", rootFinder) == "(x+1.0)*(x-3.0)=0"
27
+ assert quickTest("3x^2 + 7x + 1 = 0", rootFinder) == "(x+2.18)*(x+0.15)=0"
28
+ assert quickTest("3x^2 - 7x + 1 = 0", rootFinder) == "(x-0.15)*(x-2.18)=0"
29
+
30
+ assert quickTest("x^2 + x + 1 = 0", rootFinder) == "(x+0.5+0.87*sqrt[2](-1))*(x+0.5-0.87*sqrt[2](-1))=0"
31
+ assert quickTest("x^2 - x + 1 = 0", rootFinder) == "(x-0.5+0.87*sqrt[2](-1))*(x-0.5-0.87*sqrt[2](-1))=0"
32
+
33
+ # Tests for Cubic (3rd Degree) Equations
34
+ assert quickTest("2x^3 - 4x^2 - 22x + 24 = 0", rootFinder) == "(x-4.0)*(x+3.0)*(x-1.0)=0"
35
+ assert quickTest("x^3 + 6x^2 + 12x + 8 = 0", rootFinder) == "(x+2.0)^(3)=0"
36
+ assert quickTest("x^3 = 1", rootFinder) == "(x-1.0)*(x-(-0.5+0.87*sqrt[2](-1)))*(x-(-0.5-0.87*sqrt[2](-1)))=0"
37
+
38
+ # Tests for Quartic (4th Degree) Equations
39
+ assert quickTest("3x^4 + 6x^3 - 123x^2 - 126x + 1080 = 0", rootFinder) == "(x-5.0)*(x+4.0)*(x-3.0)*(x+6.0)=0"
40
+ assert quickTest("-20x^4 + 5x^3 + 17x^2 - 29x + 87 = 0", rootFinder) == "(x-1.49)*(x-(0.22+1.3*sqrt[2](-1)))*(x-(0.22-1.3*sqrt[2](-1)))*(x+1.69)=0"
41
+ assert quickTest("2x^4 + 4x^3 + 6x^2 + 8x + 10 = 0", rootFinder) == "(x-(0.28+1.42*sqrt[2](-1)))*(x-(-1.28+0.85*sqrt[2](-1)))*(x-(-1.28-0.85*sqrt[2](-1)))*(x-(0.28-1.42*sqrt[2](-1)))=0"
42
+
43
+ ###############################
44
+ # solvers.simulEqn #
45
+ ###############################
46
+
47
+
48
+ def test_simulSolvers():
49
+ assert quickTest("1000x + 2y + 3z = 4; 5x + 6y + 7z = 8; 9x + 10y + 1100z = 12", simulSolver, 'x') == "x=0.0"
50
+ assert quickTest("1000x + 2y + 3z = 4; 5x + 6y + 7z = 8; 9x + 10y + 1100z = 12", simulSolver, 'y') == "y=1.33"
51
+ assert quickTest("1000x + 2y + 3z = 4; 5x + 6y + 7z = 8; 9x + 10y + 1100z = 12", simulSolver, 'z') == "z=-0.0"
52
+
53
+ assert quickTest("1000x + 2y + 3z = 4; 5x + 6y + 7z = 8; 9x + 10y + 11z = 12", simulSolver, 'x') == "x=-0.0"
54
+ assert quickTest("1000x + 2y + 3z = 4; 5x + 6y + 7z = 8; 9x + 10y + 11z = 12", simulSolver, 'y') == "y=-1.0"
55
+ assert quickTest("1000x + 2y + 3z = 4; 5x + 6y + 7z = 8; 9x + 10y + 11z = 12", simulSolver, 'z') == "z=2.0"
56
+
57
+ assert quickTest("1x + 2y + 3z = 4; 5x + 6y + 7z = 8; 9x + 10y + 11z = 12", simulSolver, 'x') == "NoTrivialSolution"
58
+ assert quickTest("1x + 2y + 3z = 4; 5x + 6y + 7z = 8; 9x + 10y + 11z = 12", simulSolver, 'y') == "NoTrivialSolution"
59
+ assert quickTest("1x + 2y + 3z = 4; 5x + 6y + 7z = 8; 9x + 10y + 11z = 12", simulSolver, 'z') == "NoTrivialSolution"
60
+
61
+ assert quickTest("1000a + 2y + 3w = 4; 5a + 6y + 7w = 8; 9a + 10y + 1100w = 12", simulSolver, 'a') == "a=0.0"
62
+ assert quickTest("1000a + 2y + 3w = 4; 5a + 6y + 7w = 8; 9a + 10y + 1100w = 12", simulSolver, 'y') == "y=1.33"
63
+ assert quickTest("1000a + 2y + 3w = 4; 5a + 6y + 7w = 8; 9a + 10y + 1100w = 12", simulSolver, 'w') == "w=-0.0"
64
+
65
+ assert quickTest("1000a + 2y + 3w = 4; 5a + 6y + 7w = 8; 10y = 12", simulSolver, 'a') == "a=0.0"
66
+ assert quickTest("1000a + 2y + 3w = 4; 5a + 6y + 7w = 8; 10y = 12", simulSolver, 'y') == "y=1.2"
67
+ assert quickTest("1000a + 2y + 3w = 4; 5a + 6y + 7w = 8; 10y = 12", simulSolver, 'w') == "w=0.11"
68
+
69
+ # Tests for testing 'solve for all variable' option in case no variable is specified by user.
70
+ assert quickTest("1000x + 2y + 3z = 4; 5x + 6y + 7z = 8; 9x + 10y + 1100z = 12", simulSolver) == "z=-0.0;y=1.33;x=0.0"
71
+ assert quickTest("1000x + 2y + 3z = 4; 5x + 6y + 7z = 8; 9x + 10y + 11z = 12", simulSolver) == "z=2.0;y=-1.0;x=-0.0"
72
+ assert quickTest("1000a + 2y + 3w = 4; 5a + 6y + 7w = 8; 9a + 10y + 1100w = 12", simulSolver) == "y=1.33;w=-0.0;a=0.0"
73
+ assert quickTest("1000a + 2y + 3w = 4; 5a + 6y + 7w = 8; 10y = 12", simulSolver) == "y=1.2;w=0.11;a=0.0"
74
+
75
+ #################
76
+ # solvers.solve #
77
+ #################
78
+
79
+
80
+ def test_solveFor():
81
+
82
+ assert quickTest("x - 1 + 2 = 0", solveFor, 'x') == "x=(-1.0)"
83
+ assert quickTest("1 + y^2 = 0", solveFor, 'y') == "y=(-1.0)^(0.5)"
84
+ assert quickTest("x^2 - 1 = 0", solveFor, 'x') == "x=(1.0)^(0.5)"
85
+
86
+ assert quickTest("x - yz + 1= 0", solveFor, 'x') == "x=(-1.0+yz)"
87
+ assert quickTest("x - 2yz + 1= 0", solveFor, 'y') == "y=-0.5*((-1.0-x)/z)"
88
+ assert quickTest("x - 5yz + 1= 0", solveFor, 'z') == "z=-0.2*((-1.0-x)/y)"
89
+
90
+ assert quickTest("w + x^2 + yz^3 = 1", solveFor, 'w') == "w=(-x^(2.0)-yz^(3.0)+1.0)"
91
+ assert quickTest("w + x^2 + yz^3 = 1", solveFor, 'x') == "x=(-w-yz^(3.0)+1.0)^(0.5)"
92
+ assert quickTest("w + x^2 + yz^3 = 1", solveFor, 'y') == "y=((-w-x^(2.0)+1.0)/z^(3.0))"
93
+ assert quickTest("w + x^2 + yz^3 = 1", solveFor, 'z') == "z=((-w-x^(2.0)+1.0)/y)^(0.3333333333333333)"
data/tests/test_transform.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from visma.transform.factorization import factorize
2
+ from visma.transform.substitution import substitute
3
+ from visma.io.parser import tokensToString
4
+ from visma.functions.structure import Expression
5
+ from tests.tester import quickTest, getTokens
6
+
7
+ ###########################
8
+ # transform.factorization #
9
+ ###########################
10
+
11
+
12
+ def test_factorize():
13
+ assert quickTest("x", factorize) == "x"
14
+ assert quickTest("x^2 + 2x + 1", factorize) == "(x+1.0)*(x+1.0)"
15
+ assert quickTest("2x^2 - 4x + 2", factorize) == "2.0*(x-1.0)*(x-1.0)"
16
+ assert quickTest("x^4 - 1", factorize) == "(x+1.0)*(x-1.0)*(x^(2)+1.0)"
17
+ assert quickTest("1 - x^3", factorize) == "(x-1.0)*(-x^(2)-x-1.0)"
18
+ assert quickTest("x^4 - 5x^2 + 4", factorize) == "(x+2.0)*(x+1.0)*(x-1.0)*(x-2.0)"
19
+
20
+
21
+ ##########################
22
+ # transform.substitution #
23
+ ##########################
24
+
25
+
26
+ def test_substitute():
27
+
28
+ init_tok = getTokens("x")
29
+ subs_tok = getTokens("2")
30
+ tok_list = getTokens("3zx^2 + x^3 + 5x")
31
+ assert tokensToString(substitute(init_tok, subs_tok, tok_list)) == "12.0z + 8.0 + 10.0"
32
+
33
+ init_tok = getTokens("2x")
34
+ subs_tok = getTokens("4yz^2")
35
+ tok_list = getTokens("3 + 2x + zx^4 + 3xyz")
36
+ assert tokensToString(substitute(init_tok, subs_tok, tok_list)) == "3.0 + 4.0yz^(2.0) + 16.0z^(9.0)y^(4.0) + 6.0y^(2.0)z^(3.0)"
37
+
38
+ init_tok = getTokens("4x^2")
39
+ subs_tok = getTokens("9yz")
40
+ tok_list = getTokens("2x + zx^3 + 3xyz")
41
+ assert tokensToString(substitute(init_tok, subs_tok, tok_list)) == "3.0y^(0.5)z^(0.5) + 3.375z^(2.5)y^(1.5) + 4.5y^(1.5)z^(1.5)"
42
+
43
+ init_tok = getTokens("2xy^3")
44
+ subs_tok = getTokens("4z")
45
+ tok_list = getTokens("3 + 2xy^3 + z + 3x^(2)y^(6)z")
46
+ assert tokensToString(substitute(init_tok, subs_tok, tok_list)) == "3.0 + 4.0z + z + 12.0z^(3.0)"
47
+
48
+ init_tok = getTokens("5x")
49
+ subs_tok = Expression(getTokens("y + 2"))
50
+ tok_list = getTokens("3 + 4x + 2xy^3 + 3x^(2)y^(3)z")
51
+ assert tokensToString(substitute(init_tok, subs_tok, tok_list)) == "3.0 + 0.8*(y + 2.0) + (0.4y^(3.0) * (y + 2.0)) + (0.12y^(3.0)z * (y + 2.0)^(2.0))"
data/tests/test_utils.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from visma.utils.integers import gcd, factors
2
+ from visma.utils.polynomials import syntheticDivision
3
+
4
+ ##################
5
+ # utils.integers #
6
+ ##################
7
+
8
+
9
+ def test_gcd():
10
+ assert gcd([1]) == 1
11
+ assert gcd([3, 6, 12, 24]) == 3
12
+ assert gcd([-2, 4, 8]) == -2
13
+ assert gcd([2, -4, 8]) == 2
14
+
15
+
16
+ def test_factors():
17
+ assert factors(24) == [1, 2, 3, 4, 6, 8, 12, 24]
18
+ assert factors(0.5) == [] # Invalid input
19
+
20
+
21
+ #####################
22
+ # utils.polynomials #
23
+ #####################
24
+
25
+ def test_syntheticDivision():
26
+ assert syntheticDivision([1, 2, 1], -1) == ([1.0, 1.0], 0.0)
27
+ # (x^2 + 2x + 1)/(x+1)
28
+ assert syntheticDivision([3, 2, 1, 3], 2) == ([3.0, 8.0, 17.0], 37.0)
29
+ # (3x^2 + 2x + x + 3)/(x-2)
data/tests/tester.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from visma.io.tokenize import tokenizer, getLHSandRHS, removeSpaces
2
+ from visma.io.checks import checkTypes
3
+ from visma.discreteMaths.statistics import sampleSpace
4
+
5
+
6
+ # TODO: Categorize all test cases into COVERAGE and BASIS
7
+ def quickTest(inp, operation, wrtVar=None):
8
+ if operation.__name__ not in ['ArithemeticMean', 'Mode', 'Median']:
9
+ if (inp.count(';') == 2):
10
+ afterSplit = inp.split(';')
11
+ eqStr1 = afterSplit[0]
12
+ eqStr2 = afterSplit[1]
13
+ eqStr3 = afterSplit[2]
14
+ tokens = [tokenizer(eqStr1), tokenizer(eqStr2), tokenizer(eqStr3)]
15
+ token_string, _, _ = operation(tokens[0], tokens[1], tokens[2], wrtVar)
16
+ return removeSpaces(token_string)
17
+ elif (inp.count(';') == 1):
18
+ afterSplit = inp.split(';')
19
+ eqStr1 = afterSplit[0]
20
+ eqStr2 = afterSplit[1]
21
+ tokens = [tokenizer(eqStr1), tokenizer(eqStr2)]
22
+ _, _, token_string, _, _ = operation(tokens[0], tokens[1])
23
+ return removeSpaces(token_string)
24
+ else:
25
+ lhs, rhs = getLHSandRHS(tokenizer(inp))
26
+ _, inpType = checkTypes(lhs, rhs)
27
+ if inpType == "equation":
28
+ if wrtVar is not None:
29
+ _, _, _, token_string, _, _ = operation(lhs, rhs, wrtVar)
30
+ else:
31
+ _, _, _, token_string, _, _ = operation(lhs, rhs)
32
+ elif inpType == "expression":
33
+ if wrtVar is not None:
34
+ _, _, token_string, _, _ = operation(lhs, wrtVar)
35
+ else:
36
+ _, _, token_string, _, _ = operation(lhs)
37
+ else:
38
+ sampleSpaceObject = sampleSpace(inp)
39
+ token_string, _, _ = operation(sampleSpaceObject)
40
+ output = removeSpaces(token_string)
41
+ return output
42
+
43
+
44
+ def getTokens(eqString):
45
+ tokens = tokenizer(eqString)
46
+ if len(tokens) == 1:
47
+ tokens = tokens[0]
48
+ return tokens
data/visma/__init__.py ADDED
File without changes
data/visma/calculus/__init__.py ADDED
File without changes
data/visma/calculus/differentiation.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+
3
+ from visma.functions.structure import Function, Expression
4
+ from visma.functions.constant import Constant, Zero
5
+ from visma.functions.operator import Operator, Multiply, Plus
6
+ from visma.simplify.simplify import simplify
7
+ from visma.functions.variable import Variable
8
+ from visma.functions.exponential import Logarithm, Exponential
9
+ from visma.functions.trigonometry import Trigonometric
10
+ from visma.io.parser import tokensToString
11
+
12
+ ###################
13
+ # Differentiation #
14
+ ###################
15
+
16
+
17
+ def differentiate(tokens, wrtVar):
18
+ """Simplifies and then differentiates given tokens wrt given variable
19
+
20
+ Arguments:
21
+ tokens {list} -- list of function tokens
22
+ wrtVar {string} -- with respect to variable
23
+
24
+ Returns:
25
+ tokens {list} -- list of differentiated tokens
26
+ availableOperations {list} -- list of operations
27
+ token_string {string} -- output equation string
28
+ animation {list} -- equation tokens for step-by-step
29
+ comments {list} -- comments for step-by-step
30
+ """
31
+ animation = []
32
+ comments = []
33
+ tokens, availableOperations, token_string, animation, comments = simplify(tokens)
34
+ tokens, animNew, commentsNew = differentiateTokens(tokens, wrtVar)
35
+ animation.append(animNew)
36
+ comments.append(commentsNew)
37
+ tokens, availableOperations, token_string, animation2, comments2 = simplify(tokens)
38
+ animation2.pop(0)
39
+ comments2.pop(0)
40
+ animation.extend(animation2)
41
+ comments.extend(comments2)
42
+ return tokens, availableOperations, token_string, animation, comments
43
+
44
+
45
+ def differentiateTokens(funclist, wrtVar):
46
+ """Differentiates given tokens wrt given variable
47
+
48
+ Arguments:
49
+ funclist {list} -- list of function tokens
50
+ wrtVar {string} -- with respect to variable
51
+
52
+ Returns:
53
+ diffFunc {list} -- list of differentiated tokens
54
+ animNew {list} -- equation tokens for step-by-step
55
+ commentsNew {list} -- comments for step-by-step
56
+ """
57
+ diffFunc = []
58
+ animNew = []
59
+ commentsNew = ["Differentiating with respect to " + r"$" + wrtVar + r"$" + "\n"]
60
+ for func in funclist:
61
+ if isinstance(func, Operator):
62
+ diffFunc.append(func)
63
+ else:
64
+ newExpression = Expression()
65
+ newfunc = []
66
+ while(isinstance(func, Function)):
67
+ commentsNew[0] += r"$" + "\\frac{d}{d" + wrtVar + "} ( " + func.__str__() + ")" + r"$"
68
+ funcCopy = copy.deepcopy(func)
69
+ if wrtVar in funcCopy.functionOf():
70
+ if isinstance(funcCopy, Trigonometric) or isinstance(funcCopy, Logarithm) or isinstance(funcCopy, Variable) or isinstance(funcCopy, Exponential):
71
+ funcCopy = funcCopy.differentiate(wrtVar)
72
+ newfunc.append(funcCopy)
73
+ commentsNew[0] += r"$" + r"= " + funcCopy.__str__() + r"\ ;\ " + r"$"
74
+ else:
75
+ funcCopy = Zero()
76
+ newfunc.append(funcCopy)
77
+ commentsNew[0] += r"$" + r"= " + funcCopy.__str__() + r"\ ;\ " + r"$"
78
+ newfunc.append(Multiply())
79
+ if func.operand is None:
80
+ break
81
+ else:
82
+ func = func.operand
83
+ if isinstance(func, Constant):
84
+ diffFunc = Zero()
85
+ break
86
+ newfunc.pop()
87
+ newExpression.tokens = newfunc
88
+ diffFunc.extend([newExpression])
89
+ animNew.extend(diffFunc)
90
+ return diffFunc, animNew, commentsNew
91
+
92
+
93
+ def differentiationProductRule(tokens, wrtVar):
94
+ resultTokens = []
95
+ for i in range(0, len(tokens), 2):
96
+ currentDiff = Expression()
97
+ currentDiffTokens, _, _, _, _ = differentiate([tokens[i]], wrtVar)
98
+ currentDiff.tokens = currentDiffTokens
99
+ tempTokens = copy.deepcopy(tokens)
100
+ tempTokens[i] = currentDiff
101
+ resultTokens.extend(tempTokens)
102
+ resultTokens.append(Plus())
103
+ resultTokens.pop()
104
+ token_string = tokensToString(resultTokens)
105
+ # TODO: Make simplify module to simplify expressions involving Trigonometric Expressions (to some extent)
106
+ # resultTokens, _, token_string, _, _ = simplify(resultTokens)
107
+ return tokens, [], token_string, [], []
data/visma/calculus/integration.py ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ from visma.functions.constant import Constant
3
+ from visma.functions.variable import Variable
4
+ from visma.functions.operator import Operator, Binary
5
+ from visma.simplify.simplify import simplify
6
+ from visma.functions.trigonometry import Trigonometric
7
+ from visma.calculus.differentiation import differentiate
8
+ from visma.io.parser import tokensToString
9
+
10
+ ###############
11
+ # Integration #
12
+ ###############
13
+
14
+
15
+ def integrate(tokens, wrtVar):
16
+ """Simplifies and then integrates given tokens wrt given variable
17
+
18
+ Arguments:
19
+ tokens {list} -- list of function tokens
20
+ wrtVar {string} -- with respect to variable
21
+
22
+ Returns:
23
+ tokens {list} -- list of integrated tokens
24
+ availableOperations {list} -- list of operations
25
+ token_string {string} -- output equation string
26
+ animation {list} -- equation tokens for step-by-step
27
+ comments {list} -- comments for step-by-step
28
+ """
29
+
30
+ tokens, availableOperations, token_string, animation, comments = simplify(tokens)
31
+ tokens, animNew, commentsNew = (integrateTokens(tokens, wrtVar))
32
+ animation.append(animNew)
33
+ comments.append(commentsNew)
34
+ tokens, availableOperations, token_string, animation2, comments2 = simplify(tokens)
35
+ animation2.pop(0)
36
+ comments2.pop(0)
37
+ animation.extend(animation2)
38
+ comments.extend(comments2)
39
+ return tokens, availableOperations, token_string, animation, comments
40
+
41
+
42
+ def integrateTokens(funclist, wrtVar):
43
+ """Integrates given tokens wrt given variable
44
+
45
+ Arguments:
46
+ funclist {list} -- list of function tokens
47
+ wrtVar {string} -- with respect to variable
48
+
49
+ Returns:
50
+ intFunc {list} -- list of integrated tokens
51
+ animNew {list} -- equation tokens for step-by-step
52
+ commentsNew {list} -- comments for step-by-step
53
+ """
54
+ intFunc = []
55
+ animNew = []
56
+ commentsNew = ["Integrating with respect to " + r"$" + wrtVar + r"$" + "\n"]
57
+ for func in funclist:
58
+ if isinstance(func, Operator): # add isfunctionOf
59
+ intFunc.append(func)
60
+ else:
61
+ newfunc = []
62
+ commentsNew[0] += r"$" + r"\int \ " + r"( " + func.__str__() + ")" + r" d" + wrtVar + r"$"
63
+ funcCopy = copy.deepcopy(func)
64
+ if wrtVar in funcCopy.functionOf():
65
+ if isinstance(funcCopy, Variable):
66
+ log = False
67
+ funcCopy, log = funcCopy.integrate(wrtVar)
68
+ if log:
69
+ commentsNew[0] += r"$" + r"= " + funcCopy[0].__str__() + r"*" + funcCopy[2].__str__() + r"\ ;\ " + r"$"
70
+ newfunc.extend(funcCopy)
71
+ else:
72
+ commentsNew[0] += r"$" + r"= " + funcCopy.__str__() + r"\ ;\ " + r"$"
73
+ newfunc.append(funcCopy)
74
+ elif isinstance(funcCopy, Trigonometric):
75
+ funcCopy = funcCopy.integrate(wrtVar)
76
+ newfunc.append(funcCopy)
77
+ commentsNew[0] += r"$" + r"= " + funcCopy.__str__() + r"\ ;\ " + r"$"
78
+ else:
79
+ if isinstance(funcCopy, Variable):
80
+ funcCopy.value.append(wrtVar)
81
+ funcCopy.power.append(1)
82
+ if isinstance(funcCopy, Constant):
83
+ coeff = funcCopy.value
84
+ funcCopy = Variable()
85
+ funcCopy.coefficient = coeff
86
+ funcCopy.value.append(wrtVar)
87
+ funcCopy.power.append(1)
88
+ newfunc.append(funcCopy)
89
+ commentsNew[0] += r"$" + r"= " + funcCopy.__str__() + r"\ ;\ " + r"$"
90
+ intFunc.extend(newfunc)
91
+ animNew.extend(intFunc)
92
+ return intFunc, animNew, commentsNew
93
+
94
+
95
+ def integrationByParts(tokens, wrtVar):
96
+ if (isinstance(tokens[1], Binary) and tokens[1].value == '*'):
97
+ u = tokens[0]
98
+ v = tokens[2]
99
+ vIntegral, _, _, _, _ = integrate(v, wrtVar)
100
+ uDerivative, _, _, _, _ = differentiate(u, wrtVar)
101
+ term1 = u * vIntegral
102
+ term2, _, _, _, _ = integrate(uDerivative * vIntegral, 'x')
103
+ resultToken = term1 - term2
104
+ token_string = tokensToString(resultToken)
105
+ return resultToken, [], token_string, [], []
data/visma/config/__init__.py ADDED
File without changes
data/visma/config/values.py ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+
3
+ # config
4
+ ROUNDOFF = 2
5
+ # FIXME: Make ROUNDOFF global
6
+ INPUT_TYPE = "Greek"
7
+
8
+ # constants
9
+ PI = math.pi
10
+ EXP = math.exp(1)
11
+ IOTA = complex(0, 1)
data/visma/discreteMaths/__init__.py ADDED
File without changes
data/visma/discreteMaths/boolean.py ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from visma.simplify.simplify import simplify
2
+ from visma.functions.constant import Constant
3
+ from visma.io.tokenize import tokenizer
4
+
5
+ # TODO: Test cases.
6
+ # TODO: Implement GUI/CLI.
7
+
8
+
9
+ def logicalAND(token1, token2):
10
+ """Implements Bitwise AND
11
+ Arguments:
12
+ token1 -- {list} -- List of tokens of a constant number
13
+ token2 -- {list} -- List of tokens of a constant number
14
+
15
+ Returns:
16
+ token_string {string} -- final result stored in a string
17
+ animation {list} -- list of equation solving process
18
+ comments {list} -- list of comments in equation solving process
19
+ """
20
+
21
+ comments = []
22
+ animations = []
23
+ token1, _, _, _, _ = simplify(token1)
24
+ token2, _, _, _, _ = simplify(token2)
25
+ if isinstance(token1, Constant) and isinstance(token2, Constant):
26
+ comments += [['Converting numbers to Binary Illustrations: ']]
27
+ animations += [[]]
28
+ binaryValue1 = token1.binary()
29
+ binaryValue2 = token2.binary()
30
+ comments += [[]]
31
+ animations += [[tokenizer('a = ' + str(binaryValue1))]]
32
+ comments += [[]]
33
+ animations += [[tokenizer('b = ' + str(binaryValue2))]]
34
+ comments += [['Doing AND operation for each of the consecutive bit']]
35
+ animations += [[]]
36
+ resultValue = token1.calculate() & token2.calculate()
37
+ comments += [['Final result is']]
38
+ animations += [[tokenizer('r = ' + str(resultValue))]]
39
+ token_string = 'r = ' + str(resultValue)
40
+ return token_string, animations, comments
41
+ else:
42
+ return '', [], []
43
+
44
+
45
+ def logicalOR(token1, token2):
46
+ """Implements Bitwise OR
47
+ Arguments:
48
+ token1 -- {list} -- List of tokens of a constant number
49
+ token2 -- {list} -- List of tokens of a constant number
50
+
51
+ Returns:
52
+ token_string {string} -- final result stored in a string
53
+ animation {list} -- list of equation solving process
54
+ comments {list} -- list of comments in equation solving process
55
+ """
56
+
57
+ comments = []
58
+ animations = []
59
+ token1, _, _, _, _ = simplify(token1)
60
+ token2, _, _, _, _ = simplify(token2)
61
+ if isinstance(token1, Constant) and isinstance(token2, Constant):
62
+ comments += [['Converting numbers to Binary Illustrations: ']]
63
+ animations += [[]]
64
+ binaryValue1 = token1.binary()
65
+ binaryValue2 = token2.binary()
66
+ comments += [[]]
67
+ animations += [[tokenizer('a = ' + str(binaryValue1))]]
68
+ comments += [[]]
69
+ animations += [[tokenizer('b = ' + str(binaryValue2))]]
70
+ comments += [['Doing OR operation for each of the consecutive bit']]
71
+ animations += [[]]
72
+ resultValue = token1.calculate() | token2.calculate()
73
+ comments += [['Final result is']]
74
+ animations += [[tokenizer('r = ' + str(resultValue))]]
75
+ token_string = 'r = ' + str(resultValue)
76
+ return token_string, animations, comments
77
+ else:
78
+ return '', [], []
79
+
80
+
81
+ def logicalNOT(token1):
82
+ """Implements Bitwise NOT
83
+ Arguments:
84
+ token1 -- {list} -- List of tokens of a constant number
85
+
86
+ Returns:
87
+ token_string {string} -- final result stored in a string
88
+ animation {list} -- list of equation solving process
89
+ comments {list} -- list of comments in equation solving process
90
+ """
91
+
92
+ comments = []
93
+ animations = []
94
+ token1, _, _, _, _ = simplify(token1)
95
+ if isinstance(token1, Constant):
96
+ comments += [['Converting numbers to Binary Illustrations: ']]
97
+ animations += [[]]
98
+ binaryValue1 = token1.binary()
99
+ comments += [[]]
100
+ animations += [[tokenizer('a = ' + str(binaryValue1))]]
101
+ resultValueBinary = bin((1 << 8) - 1 - int(binaryValue1, 2))
102
+ resultValue = int(resultValueBinary, 2)
103
+ comments += [['Final binary is']]
104
+ animations += [[tokenizer('r = ' + str(resultValueBinary))]]
105
+ comments += [['Final result is']]
106
+ animations += [[tokenizer('r = ' + str(resultValue))]]
107
+ token_string = 'r = ' + str(resultValue)
108
+ return token_string, animations, comments
109
+ else:
110
+ return '', [], []
data/visma/discreteMaths/combinatorics.py ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ '''This module is supposed to contain all the combinatorics related stuff which can be performed by VisualMath (VisMa)
2
+
3
+ Note: Please try to maintain proper documentation
4
+ '''
5
+
6
+ from visma.io.tokenize import tokenizer
7
+ from visma.simplify.simplify import simplify
8
+ from visma.io.parser import tokensToString
9
+ from visma.functions.constant import Constant
10
+
11
+
12
+ def factorial(tokens):
13
+ '''Used to get factorial of tokens provided
14
+
15
+ Argument:
16
+ tokens {list} -- list of tokens
17
+
18
+ Returns:
19
+ result {list} -- list of result tokens
20
+ {empty list}
21
+ token_string {string} -- final result stored in a string
22
+ animation {list} -- list of equation solving process
23
+ comments {list} -- list of comments in equation solving process
24
+ '''
25
+ tokens, _, _, _, _ = simplify(tokens)
26
+ animation = []
27
+ comments = []
28
+ if (isinstance(tokens[0], Constant) & len(tokens) == 1):
29
+ value = int(tokens[0].calculate())
30
+ if value == 0:
31
+ result = [Constant(1)]
32
+ comments += [['Factorial of ZERO is defined to be 1']]
33
+ animation += [tokenizer('f = ' + str(1))]
34
+ else:
35
+ resultString = ''
36
+ for i in range(1, value + 1):
37
+ resultString += (str(i) + '*')
38
+ resultString = resultString[:-1]
39
+ resultTokens = tokenizer(resultString)
40
+ comments += [['Expanding the factorial as']]
41
+ animation += [resultTokens]
42
+ result, _, _, _, _ = simplify(resultTokens)
43
+ token_string = tokensToString(result)
44
+ comments += [['Hence result: ']]
45
+ animation += [tokenizer('f = ' + token_string)]
46
+ return result, [], token_string, animation, comments
47
+
48
+
49
+ def permutation(nTokens, rTokens):
50
+ '''Used to get Permutation (nPr)
51
+
52
+ Argument:
53
+ nTokens {list} -- list of tokens of "n" in nPr
54
+ rTokens {list} -- list of tokens of "r" in nPr
55
+
56
+ Returns:
57
+ result {list} -- list of result tokens
58
+ {empty list}
59
+ token_string {string} -- final result stored in a string
60
+ animation {list} -- list of equation solving process
61
+ comments {list} -- list of comments in equation solving process
62
+ '''
63
+ nTokens, _, _, _, _ = simplify(nTokens)
64
+ rTokens, _, _, _, _ = simplify(rTokens)
65
+ animation = []
66
+ comments = []
67
+ if (isinstance(nTokens[0], Constant) & len(nTokens) == 1) & (isinstance(rTokens[0], Constant) & len(rTokens) == 1):
68
+ comments += [['nCr is defined as (n!)/(r!)*(n-r)!']]
69
+ animation += [[]]
70
+ comments += [['Solving for n!']]
71
+ animation += [[]]
72
+ numerator, _, _, animNew1, commentNew1 = factorial(nTokens)
73
+ commentNew1[1] = ['(n)! is thus solved as: ']
74
+ animation.extend(animNew1)
75
+ comments.extend(commentNew1)
76
+ denominator = nTokens[0] - rTokens[0]
77
+ comments += [['Solving for (n - r)!']]
78
+ animation += [[]]
79
+ denominator, _, _, animNew2, commentNew2 = factorial([denominator])
80
+ commentNew2[1] = ['(n - r)! is thus solved as: ']
81
+ comments.extend(commentNew2)
82
+ animation.extend(animNew2)
83
+ result = [numerator[0] / denominator[0]]
84
+ comments += [['On placing values in (n!)/(n-r)!']]
85
+ animation += [tokenizer('r = ' + tokensToString(result))]
86
+ token_string = tokensToString(result)
87
+ return result, [], token_string, animation, comments
88
+
89
+
90
+ def combination(nTokens, rTokens):
91
+ '''Used to get Combination (nCr)
92
+
93
+ Argument:
94
+ nTokens {list} -- list of tokens of "n" in nCr
95
+ rTokens {list} -- list of tokens of "r" in nCr
96
+
97
+ Returns:
98
+ result {list} -- list of result tokens
99
+ {empty list}
100
+ token_string {string} -- final result stored in a string
101
+ animation {list} -- list of equation solving process
102
+ comments {list} -- list of comments in equation solving process
103
+ '''
104
+ nTokens, _, _, _, _ = simplify(nTokens)
105
+ rTokens, _, _, _, _ = simplify(rTokens)
106
+ animation = []
107
+ comments = []
108
+ if (isinstance(nTokens[0], Constant) & len(nTokens) == 1) & (isinstance(rTokens[0], Constant) & len(rTokens) == 1):
109
+ comments += [['nCr is defined as (n!)/(r!)*(n-r)!']]
110
+ animation += [[]]
111
+ comments += [['Solving for n!']]
112
+ animation += [[]]
113
+ numerator, _, _, animNew1, commentNew1 = factorial(nTokens)
114
+ commentNew1[1] = ['(n)! is thus solved as: ']
115
+ animation.extend(animNew1)
116
+ comments.extend(commentNew1)
117
+ denominator1 = nTokens[0] - rTokens[0]
118
+ comments += [['Solving for (n - r)!']]
119
+ animation += [[]]
120
+ denominator1, _, _, animNew2, commentNew2 = factorial([denominator1])
121
+ commentNew2[1] = ['(n - r)! is thus solved as: ']
122
+ comments.extend(commentNew2)
123
+ animation.extend(animNew2)
124
+ comments += [['Solving for r!']]
125
+ animation += [[]]
126
+ denominator2, _, _, animNew3, commentNew3 = factorial([rTokens[0]])
127
+ commentNew3[1] = ['r! is thus solved as: ']
128
+ comments.extend(commentNew3)
129
+ animation.extend(animNew3)
130
+ denominator = denominator1[0] * denominator2[0]
131
+ result = [numerator[0] / denominator]
132
+ comments += [['On placing values in (n!)/(r!)*(n-r)!']]
133
+ animation += [tokenizer('r = ' + tokensToString(result))]
134
+ token_string = tokensToString(result)
135
+ return result, [], token_string, animation, comments
data/visma/discreteMaths/probability.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from visma.io.tokenize import tokenizer
2
+
3
+
4
+ def simpleProbability(sampleSpace, requiredEvent=None):
5
+ """Implements simple probability
6
+
7
+ Arguments:
8
+ sampleSpace -- {visma.discreteMaths.statistics.ArithemeticMean}
9
+ requiredEvent -- {Event whose probability is to be calculated}
10
+
11
+ Returns:
12
+ token_string {string} -- final result stored in a string
13
+ animation {list} -- list of equation solving process
14
+ comments {list} -- list of comments in equation solving process
15
+ """
16
+
17
+ animations = []
18
+ comments = []
19
+ events = []
20
+ token_string = ''
21
+ if sampleSpace.values is not []:
22
+ events.extend(sampleSpace.values)
23
+ totalOccurances = len(events)
24
+ animations += [[]]
25
+ comments += [['The total occurances are ' + str(totalOccurances)]]
26
+ requiredOccurances = events.count(requiredEvent)
27
+ animations += [[]]
28
+ comments += [['The occurances of required event are ' + str(requiredOccurances)]]
29
+ probability = requiredOccurances/totalOccurances
30
+ comments += [['Hence, Required probability is: ']]
31
+ animations += [tokenizer('P = ' + str(probability))]
32
+ token_string = 'P = ' + str(probability)
33
+ return token_string, animations, comments
34
+ else:
35
+ return '', [], []
data/visma/discreteMaths/statistics.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections import Counter
2
+ from visma.io.tokenize import tokenizer
3
+ from visma.simplify.simplify import simplify
4
+ from visma.io.parser import tokensToString
5
+ from visma.functions.constant import Constant
6
+
7
+ # TODO: Implement this module in GUI/CLI
8
+
9
+
10
+ class sampleSpace(object):
11
+ """Class used to represent sample space of a data.
12
+ """
13
+ values = []
14
+ size = 0
15
+
16
+ def __init__(self, values):
17
+ if values is not None:
18
+ self.values = values
19
+ self.size = len(values)
20
+
21
+
22
+ def ArithemeticMean(sampleSpace):
23
+ """Implements arithemetic mean
24
+
25
+ Arguments:
26
+ sampleSpace -- {visma.discreteMaths.statistics.ArithemeticMean}
27
+
28
+ Returns:
29
+ token_string {string} -- final result stored in a string
30
+ animation {list} -- list of equation solving process
31
+ comments {list} -- list of comments in equation solving process
32
+ """
33
+ animations = []
34
+ comments = []
35
+ if sampleSpace.values is not []:
36
+ sm = sum(sampleSpace.values)
37
+ animations += [[]]
38
+ comments += [['Sum of all the values of the sample space provided by user: ' + str(sm)]]
39
+ summationString = ''
40
+ for val in sampleSpace.values:
41
+ summationString += str(val) + '+'
42
+ summationString = summationString[:-1]
43
+ summationTokens = tokenizer(summationString)
44
+ resultTokens, _, _, _, _ = simplify(summationTokens)
45
+ if len(resultTokens) == 1 and isinstance(resultTokens[0], Constant):
46
+ ArithemeticMean = resultTokens[0]/Constant(len(sampleSpace.values))
47
+ animations += [[]]
48
+ comments += [['Considering ' + str(len(sampleSpace.values)) + ' values.']]
49
+ animations += [[tokenizer('mean = ' + str(ArithemeticMean.calculate))]]
50
+ token_string = tokensToString([ArithemeticMean])
51
+ return token_string, animations, comments
52
+ else:
53
+ return '', [], []
54
+
55
+
56
+ def Mode(sampleSpace):
57
+ """Implements Mode
58
+
59
+ Arguments:
60
+ sampleSpace -- {visma.discreteMaths.statistics.ArithemeticMean}
61
+
62
+ Returns:
63
+ token_string {string} -- final result stored in a string
64
+ animation {list} -- list of equation solving process
65
+ comments {list} -- list of comments in equation solving process
66
+ """
67
+
68
+ animations = []
69
+ comments = []
70
+ token_string = ''
71
+ if sampleSpace.values is not []:
72
+ mode, frequency = Counter(sampleSpace.values).most_common(1)[0]
73
+ comments += [['The mode refers to the most occuring element']]
74
+ animations += [[]]
75
+ comments += [['Mode = ' + str(mode) + '; Mode Frequency = ' + str(frequency)]]
76
+ animations += [[]]
77
+ token_string = 'Mode = ' + str(mode) + '; Mode Frequency = ' + str(frequency)
78
+ return token_string, animations, comments
79
+ else:
80
+ return '', [], []
81
+
82
+
83
+ def Median(sampleSpace):
84
+ """Implements Median
85
+
86
+ Arguments:
87
+ sampleSpace -- {visma.discreteMaths.statistics.ArithemeticMean}
88
+
89
+ Returns:
90
+ token_string {string} -- final result stored in a string
91
+ animation {list} -- list of equation solving process
92
+ comments {list} -- list of comments in equation solving process
93
+ """
94
+
95
+ animations = []
96
+ comments = []
97
+ token_string = ''
98
+ if sampleSpace.values is not []:
99
+ sizeSampleSpace = sampleSpace.size
100
+ if sizeSampleSpace % 2 == 1:
101
+ medianValue = sorted(sampleSpace.values)[sizeSampleSpace//2]
102
+ else:
103
+ medianValue = sum(sorted(sampleSpace.values)[sizeSampleSpace//2-1: sizeSampleSpace//2+1])/2.0
104
+ comments += [['The median refers to the middle element in sorted sample space']]
105
+ animations += [[]]
106
+ comments += [['Median = ' + str(medianValue)]]
107
+ animations += [[]]
108
+ token_string = str(medianValue)
109
+ return token_string, animations, comments
110
+ else:
111
+ return '', [], []
data/visma/functions/__init__.py ADDED
File without changes
data/visma/functions/constant.py ADDED
@@ -0,0 +1,255 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from visma.functions.structure import Function, Expression
3
+ from visma.functions.variable import Variable
4
+ from visma.functions.exponential import Exponential
5
+ from visma.functions.operator import Plus, Minus
6
+
7
+ #############
8
+ # Constant #
9
+ #############
10
+
11
+
12
+ class Constant(Function):
13
+ """Class for constant type tokens
14
+
15
+ Example:
16
+ 1, -2, 3.14, 4i + 5 etc
17
+
18
+ Extends:
19
+ Function
20
+ """
21
+
22
+ def __init__(self, value=None, power=1, coefficient=1):
23
+ super().__init__()
24
+ self.coefficient = coefficient
25
+ self.power = power
26
+ if value is not None:
27
+ self.value = value
28
+ if self.value is not None:
29
+ self.value = self.calculate()
30
+ self.coefficient = 1
31
+ self.power = 1
32
+
33
+ def inverse(self, RHS):
34
+ pass
35
+
36
+ def differentiate(self):
37
+ super().differentiate()
38
+ self.value = 0
39
+
40
+ def integrate(self, intwrt):
41
+ self.coefficient = self.value ** self.power
42
+ self.__class__ = Variable
43
+ self.power = [1]
44
+ self.value = [intwrt]
45
+
46
+ def __radd__(self, other):
47
+ return self + other
48
+
49
+ def __add__(self, other):
50
+ if isinstance(other, Constant):
51
+ if self.before == '-':
52
+ result = Constant(self.calculate() - other.calculate(), self.power)
53
+ else:
54
+ result = Constant(self.calculate() + other.calculate(), self.power)
55
+ self.value = result.value
56
+ if result.value == 0 and result.power == 0:
57
+ result.value = 1
58
+ result.power = 1
59
+ result.scope = self.scope
60
+ result.value = result.calculate()
61
+ return result
62
+ elif self.isZero():
63
+ return other
64
+ elif other.isZero():
65
+ return self
66
+ elif isinstance(other, Expression):
67
+ if other.power == 1 and other.coefficient == 1:
68
+ constFound = False
69
+ for i, var in enumerate(other.tokens):
70
+ if isinstance(var, Constant):
71
+ if other.tokens[i-1].value == '+' or i == 0:
72
+ other.tokens[i] = self + var
73
+ elif other.tokens[i-1].value == '-':
74
+ other.tokens[i-1] = self - var
75
+ constFound = True
76
+ break
77
+ if not constFound:
78
+ other.tokens.extend([Plus(), self])
79
+ return other
80
+ else:
81
+ pass
82
+ self.value = self.calculate()
83
+ self.power = 1
84
+ self.coefficient = 1
85
+ exprAdd = Expression([self, Plus(), other]) # Make an Expression and assign the Tokens attribute with the Constant and the Other Variable, Trig. function,...etc.
86
+ return exprAdd
87
+
88
+ def __rsub__(self, other):
89
+ return Constant(0) - self + other
90
+
91
+ def __sub__(self, other):
92
+ if isinstance(other, Constant):
93
+ self = self + Constant(-1, 1, 1) * other
94
+ return self
95
+ elif isinstance(other, Variable):
96
+ if self.value == 0:
97
+ other.coefficient *= -1
98
+ return other
99
+ expression = Expression()
100
+ expression.tokens = [self]
101
+ expression.tokens.extend([Minus(), other])
102
+ elif isinstance(other, Expression):
103
+ expression = Expression()
104
+ expression.tokens = [self]
105
+ if other.power == 1:
106
+ coeff = other.coefficient
107
+ for i, token in enumerate(other.tokens):
108
+ print(expression, " ", type(token), other.tokens[i-1])
109
+ if isinstance(token, Constant):
110
+ if other.tokens[i-1].value == '+' or i == 0:
111
+ expression.tokens[0] = Constant(self.calculate() - token.calculate()*coeff)
112
+ elif other.tokens[i-1].value == '-':
113
+ expression.tokens[0] = Constant(self.calculate() + token.calculate()*coeff)
114
+ elif isinstance(token, Variable):
115
+ if other.tokens[i-1].value == '+' or i == 0:
116
+ expression.tokens.extend([Minus(), Variable(token)])
117
+ elif other.tokens[i-1].value == '-':
118
+ expression.tokens.extend([Plus(), Variable(token)])
119
+ else:
120
+ expression.tokens.extend([Minus(), other])
121
+ self = expression
122
+ return expression
123
+
124
+ def __rmul__(self, other):
125
+ return self * other
126
+
127
+ def __mul__(self, other):
128
+ if other.isZero():
129
+ return other
130
+ elif self.isZero():
131
+ return self
132
+ elif isinstance(other, Constant):
133
+ const = Constant(self.calculate() * other.calculate())
134
+ return const
135
+ elif isinstance(other, Variable):
136
+ variable = Variable()
137
+ variable.coefficient = self.calculate() * other.coefficient
138
+ variable.value.extend(other.value)
139
+ variable.power.extend(other.power)
140
+ self = variable
141
+ return variable
142
+ elif isinstance(other, Expression):
143
+ if other.power == 1:
144
+ other.tokens[0] = self * other.tokens[0]
145
+ for i, var in enumerate(other.tokens):
146
+ if other.tokens[i-1].value == '+' or other.tokens[i-1].value == '-':
147
+ other.tokens[i] = self * var
148
+ else:
149
+ if isinstance(other.power, Constant) or isinstance(other.power, int) or isinstance(other.power, float):
150
+ self = self ** (-1 * other.power)
151
+ for i, var in enumerate(other.tokens):
152
+ if other.tokens[i - 1].value == '+' or other.tokens[i - 1].value == '-':
153
+ other.tokens[i] = self * var
154
+ else:
155
+ other.coefficient = self * other.coefficient
156
+ else:
157
+ other.coefficient = self.calculate() * other.coefficient
158
+ return other
159
+
160
+ def __rtruediv__(self, other):
161
+ return Constant(1) / self * other
162
+
163
+ def __truediv__(self, other):
164
+ if other.value in ['+', '-', '*', '/']:
165
+ return other
166
+ elif self.isZero():
167
+ return self
168
+ elif isinstance(other, Constant):
169
+ result = Constant()
170
+ power = Constant(-1, 1, 1)
171
+ result = self * (other ** power)
172
+ return result
173
+
174
+ elif isinstance(other, Variable):
175
+ power = Constant(-1, 1, 1)
176
+ self = self * (other ** power)
177
+ return self
178
+ elif isinstance(other, Expression):
179
+ other.power = -1 * other.power
180
+ newCoeff = self * Constant(other.coefficient)
181
+ other.coefficient = newCoeff
182
+ return other
183
+ else:
184
+ if other.isZero(): # ToDo: Raise a Division by Zero Error
185
+ return other
186
+ other.coefficient = self.calculate() / other.coefficient
187
+ other.power = [-1 * eachPower for eachPower in other.power]
188
+ return other
189
+
190
+ def __pow__(self, val):
191
+ if isinstance(val, int) or isinstance(val, float):
192
+ if self.power == 0 and self.value == 0:
193
+ self.power = 1
194
+ self.value = 1
195
+ else:
196
+ self.value = (self.value ** self.power)
197
+ self.power = 1
198
+ return self
199
+ elif isinstance(val, Constant):
200
+ self.value = self.calculate() ** val.calculate()
201
+ self.coefficient = 1
202
+ self.power = 1
203
+ return self
204
+ else:
205
+ constExponent = Exponential()
206
+ constExponent.base = self.value
207
+ constExponent.coefficient = self.coefficient
208
+ constExponent.power = val
209
+ return constExponent
210
+
211
+ def calculate(self):
212
+ return self.coefficient * (self ** self.power).value
213
+
214
+ def functionOf(self):
215
+ return []
216
+
217
+ def binary(self):
218
+ '''Returns a binary string of the given constant
219
+ '''
220
+ return bin(self.calculate())[2:]
221
+
222
+
223
+ class Zero(Constant):
224
+
225
+ def __init__(self):
226
+ super().__init__()
227
+ self.value = 0
228
+
229
+
230
+ class One(Constant):
231
+
232
+ def __init__(self):
233
+ super().__init__()
234
+ self.value = 1
235
+
236
+
237
+ class Pi(Constant):
238
+
239
+ def __init__(self):
240
+ super().__init__()
241
+ self.value = math.pi
242
+
243
+
244
+ class Euler(Constant):
245
+
246
+ def __init__(self):
247
+ super().__init__()
248
+ self.value = math.e
249
+
250
+
251
+ class Iota(Constant):
252
+
253
+ def __init__(self):
254
+ super().__init__()
255
+ self.value = 1j
data/visma/functions/exponential.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import copy
3
+ from visma.functions.structure import FuncOp
4
+
5
+ #########################
6
+ # Exponential Functions #
7
+ #########################
8
+
9
+
10
+ class Logarithm(FuncOp):
11
+ """Class for log function -- log(...)
12
+
13
+ Input examples:
14
+ log(2) [without base, default base 10]
15
+ log_4(x+y) [with base]
16
+
17
+ Extends:
18
+ FuncOp
19
+ """
20
+
21
+ def __init__(self, operand=None):
22
+ super().__init__()
23
+ self.base = 10
24
+ self.value = 'log'
25
+
26
+ def inverse(self, rToken, wrtVar, inverseFunction=None):
27
+ inverseFunction = Exponential()
28
+ super().inverse(self, rToken, wrtVar, inverseFunction)
29
+
30
+ def calculate(self, val):
31
+ return self.coefficient * ((math.log(val, self.base)))
32
+
33
+ def differentiate(self, wrtVar=None):
34
+ from visma.functions.variable import Variable
35
+ result = copy.deepcopy(self)
36
+ result.__class__ = Variable
37
+ result.coefficient = 1
38
+ result.value = wrtVar
39
+ result.power = [-1]
40
+ result.operand = None
41
+ return result
42
+
43
+
44
+ class NaturalLog(Logarithm):
45
+ """Class for ln function -- ln(...) or use log_e(...)
46
+
47
+ Extends:
48
+ Logarithm
49
+ """
50
+
51
+ def __init__(self, operand=None):
52
+ super().__init__()
53
+ self.base = math.exp(1)
54
+ self.value = 'ln'
55
+
56
+
57
+ class Exponential(FuncOp):
58
+ """Class for all constant exponential functions -- as exp(...) or 5^(...)
59
+
60
+ Extends:
61
+ FuncOp
62
+ """
63
+
64
+ def __init__(self, val=None):
65
+ super().__init__()
66
+ self.value = 'exp'
67
+ if not val:
68
+ self.base = val
69
+ else:
70
+ self.base = math.e
71
+
72
+ def calculate(self):
73
+ from visma.functions.constant import Constant
74
+ if isinstance(self.power, int) or isinstance(self.power, float) or isinstance(self.power, Constant):
75
+ const = Constant()
76
+ if isinstance(self.power, Constant):
77
+ self.power = self.power.calculate()
78
+ const.value = self.coefficient * (self.base ** self.power)
79
+ return const
80
+ else:
81
+ return self
data/visma/functions/hyperbolic.py ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from visma.functions.structure import FuncOp
2
+ from visma.functions.exponential import NaturalLog
3
+ import math
4
+
5
+ ########################
6
+ # Hyberbolic Functions #
7
+ ########################
8
+
9
+
10
+ class Sinh(FuncOp):
11
+ """Class for sinh function -- sinh(...)
12
+
13
+ Extends:
14
+ FuncOp
15
+ """
16
+
17
+ def __init__(self):
18
+ super().__init__()
19
+ self.value = 'sinh'
20
+
21
+ def inverse(self, RHS):
22
+ super().inverse(RHS)
23
+ self.__class__ = ArcSinh
24
+
25
+ def differentiate(self):
26
+ super().differentiate()
27
+ self.__class__ = Cosh
28
+
29
+ def integrate(self):
30
+ self.__class__ = Cosh
31
+
32
+ def calculate(self, val):
33
+ return self.coefficient * ((math.sinh(val))**self.power)
34
+
35
+
36
+ class Cosh(FuncOp):
37
+ """Class for cosh function -- cosh(...)
38
+
39
+ Extends:
40
+ FuncOp
41
+ """
42
+
43
+ def __init__(self):
44
+ super().__init__()
45
+ self.value = 'cosh'
46
+
47
+ def inverse(self, RHS):
48
+ super().inverse(RHS)
49
+ self.__class__ = ArcCosh
50
+
51
+ def differentiate(self):
52
+ super().differentiate()
53
+ self.__class__ = Sinh
54
+
55
+ def integrate(self):
56
+ self.__class__ = Sinh
57
+
58
+ def calculate(self, val):
59
+ return self.coefficient * ((math.cosh(val))**self.power)
60
+
61
+
62
+ class Tanh(FuncOp):
63
+ """Class for tanh function -- tanh(...)
64
+
65
+ Extends:
66
+ FuncOp
67
+ """
68
+
69
+ def __init__(self):
70
+ super().__init__()
71
+ self.value = 'tanh'
72
+
73
+ def inverse(self, RHS):
74
+ super().inverse(RHS)
75
+ self.__class__ = ArcTanh
76
+
77
+ def differentiate(self):
78
+ super().differentiate()
79
+ self.__class__ = Cosh # Derivative of Tanh(x) is equal to 1-Tanh^2(x) = Sech^2(x) = Cosh^-2(x), So Class is Cosh, and Power is to be set to (-2).
80
+
81
+ def integrate(self):
82
+ self.__class__ = NaturalLog # Ln(Cosh(x)), value is to be set to Cosh(...).
83
+
84
+ def calculate(self, val):
85
+ return self.coefficient * ((math.tanh(val)) ** self.power)
86
+
87
+ ################################
88
+ # Inverse Hyperbolic Functions #
89
+ ################################
90
+
91
+
92
+ class ArcSinh(FuncOp):
93
+ pass
94
+
95
+
96
+ class ArcCosh(FuncOp):
97
+ pass
98
+
99
+
100
+ class ArcTanh(FuncOp):
101
+ pass
data/visma/functions/operator.py ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ class Operator(object):
2
+ """The Operator class is for operators(+, -, *, / etc)
3
+
4
+ Example:
5
+ '+', '-', '*' etc
6
+
7
+ Note:
8
+ Not to be confused with 'operator' and 'operand' properties of 'Function' class
9
+ """
10
+
11
+ def __init__(self):
12
+ self.tid = None
13
+ self.scope = None
14
+ self.value = None
15
+
16
+ def __str__(self):
17
+ represent = ""
18
+ represent += str(self.value)
19
+ return represent
20
+
21
+ def differentiate(self):
22
+ return self
23
+
24
+
25
+ class Binary(Operator):
26
+ """Binary operator takes two operands
27
+
28
+ Example:
29
+ '2 + 2', '5/6' etc
30
+
31
+ Extends:
32
+ Operator
33
+ """
34
+
35
+ def __init__(self, value=None):
36
+ super().__init__()
37
+ if value is not None:
38
+ self.value = value
39
+
40
+
41
+ class Sqrt(Operator):
42
+
43
+ def __init__(self, power=None, operand=None):
44
+ super().__init__()
45
+ if power is not None:
46
+ self.power = power
47
+ if operand is not None:
48
+ self.operand = operand
49
+
50
+ def __str__(self):
51
+ represent = ""
52
+ if self.operand.value == -1:
53
+ represent += r"\iota "
54
+ else:
55
+ represent += r"\sqrt" + self.operand.__str__()
56
+ return represent
57
+
58
+
59
+ class Plus(Binary):
60
+ """Class for '+'
61
+
62
+ Extends:
63
+ Binary
64
+ """
65
+
66
+ def __init__(self):
67
+ super().__init__()
68
+ self.value = '+'
69
+
70
+
71
+ class Minus(Binary):
72
+ """Class for '-'
73
+
74
+ Extends:
75
+ Binary
76
+ """
77
+
78
+ def __init__(self):
79
+ super().__init__()
80
+ self.value = '-'
81
+
82
+
83
+ class Multiply(Binary):
84
+ """Class for '*'
85
+
86
+ Extends:
87
+ Binary
88
+ """
89
+
90
+ def __init__(self):
91
+ super().__init__()
92
+ self.value = '*'
93
+
94
+
95
+ class Divide(Binary):
96
+ """Class for '/'
97
+
98
+ Extends:
99
+ Binary
100
+ """
101
+
102
+ def __init__(self):
103
+ super().__init__()
104
+ self.value = '/'
105
+
106
+
107
+ class EqualTo(Binary):
108
+ """Class for '='
109
+
110
+ Extends:
111
+ Binary
112
+ """
113
+
114
+ def __init__(self):
115
+ super().__init__()
116
+ self.value = '='
data/visma/functions/structure.py ADDED
@@ -0,0 +1,301 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+
3
+
4
+ class Function(object):
5
+ """Basis function class for all functions
6
+
7
+ The Function class forms the basis for the functions tokens of all types.
8
+ """
9
+
10
+ def __init__(self):
11
+ self.tid = None
12
+ self.scope = None
13
+ self.value = None
14
+ self.coefficient = 1
15
+ self.power = 1
16
+ self.operand = None
17
+ self.operator = None
18
+ self.before = None
19
+ self.after = None
20
+ self.beforeScope = None
21
+ self.afterScope = None
22
+
23
+ def __str__(self, nv=None, np=None, nc=None):
24
+ """Equation token to string
25
+
26
+ Coverts equation tokens to string for text and LaTeX rendering
27
+
28
+ Keyword Arguments:
29
+ nv {int} -- number of values (default: {None})
30
+ np {int} -- number of powers (default: {None})
31
+ nc {int} -- number of coefficients (default: {None})
32
+
33
+ Returns:
34
+ represent {string} -- string/latex representation of equation
35
+ """
36
+ # OPTIMIZE: Works but a mess. Organize and add comments
37
+ represent = ""
38
+
39
+ if np is None and nv is None and nc is None:
40
+ if self.coefficient != 1:
41
+ represent += str(self.coefficient)
42
+ elif nc is not None:
43
+ if self.coefficient[nc] != 1:
44
+ represent += str(self.coefficient[nc])
45
+
46
+ if isinstance(self.value, list):
47
+ if nv is None and np is None:
48
+ for eachValue, eachPower in zip(self.value, self.power):
49
+ represent += "{" + str(eachValue) + "}"
50
+ if eachPower != 1:
51
+ represent += "^" + "{" + str(eachPower) + "}"
52
+ elif nc is None:
53
+ represent += "{" + str(self.value[nv]) + "}"
54
+ if self.power[np] != 1:
55
+ represent += "^" + "{" + str(self.power[np]) + "}"
56
+ elif nc is not None:
57
+ for i, val in enumerate(self.value):
58
+ represent += "{" + str(val) + "}"
59
+ if self.power[np][i] != 1:
60
+ represent += "^" + "{" + str(self.power[np][i]) + "}"
61
+ elif self.operand is not None:
62
+ represent += "\\" + self.value
63
+ if self.power != 1:
64
+ represent += "^" + "{" + str(self.power) + "}"
65
+ represent += "({" + self.operand.__str__() + "})"
66
+ else:
67
+ represent += "{" + str(self.value) + "}"
68
+ if self.power != 1:
69
+ represent += "^" + "{" + str(self.power) + "}"
70
+
71
+ return represent
72
+
73
+ def prop(self, tid=None, scope=None, value=None, coeff=None, power=None, operand=None, operator=None):
74
+ """Set function token properties
75
+
76
+ Keyword Arguments:
77
+ tid {[type]} -- Token ID (default: {None})
78
+ scope {int} -- Scope (default: {None})
79
+ value {int or list} -- Value (default: {None})
80
+ coeff {int} -- Coefficient (default: {None})
81
+ power {int or list} -- Power (default: {None})
82
+ operand {visma.functions.structure.Function} -- Operand (default: {None})
83
+ operator {visma.functions.structure.Function} -- Operator (default: {None})
84
+ """
85
+ if tid is not None:
86
+ self.tid = tid
87
+ if scope is not None:
88
+ self.scope = scope
89
+ if value is not None:
90
+ self.value = value
91
+ if coeff is not None:
92
+ self.coefficient = coeff
93
+ if power is not None:
94
+ self.power = power
95
+ if operand is not None:
96
+ self.operand = operand
97
+ if operator is not None:
98
+ self.operator = operator
99
+
100
+ def differentiate(self):
101
+ """Differentiate function token
102
+ """
103
+ self.power = 1
104
+ self.coefficient = 1
105
+
106
+ def level(self):
107
+ """Level of function token
108
+ """
109
+ return (int((len(self.tid)) / 2)), 5
110
+
111
+ def functionOf(self):
112
+ inst = copy.deepcopy(self)
113
+ while inst.operand is not None:
114
+ inst = inst.operand
115
+ return inst.value
116
+
117
+ def isZero(self):
118
+ """
119
+ It checks if the Function is equal to Zero or not, to decide it should be Added, Subtracted,...etc. or not.
120
+ :returns: bool
121
+ """
122
+ if (self.value == 0 and self.power != 0) or self.coefficient == 0:
123
+ return True
124
+ return False
125
+
126
+
127
+ ##########
128
+ # FuncOp #
129
+ ##########
130
+
131
+ class FuncOp(Function):
132
+ """Defined for functions of form sin(...), log(...), exp(...) etc which take a function(operand) as argument
133
+ """
134
+ def __init__(self, operand=None):
135
+ super().__init__()
136
+ if operand is not None:
137
+ self.operand = operand
138
+
139
+ def __str__(self):
140
+ represent = ""
141
+ represent += "\\" + self.value
142
+ if self.power != 1:
143
+ represent += "^" + "{" + str(self.power) + "}"
144
+ if self.operand is not None:
145
+ represent += "{(" + str(self.operand) + ")}"
146
+ return represent
147
+
148
+ def inverse(self, rToken, wrtVar, inverseFunction):
149
+ """Returns inverse of function
150
+
151
+ Applies inverse of function to RHS and LHS.
152
+
153
+ Arguments:
154
+ rToken {visma.functions.structure.Function} -- RHS token
155
+ wrtVar {string} -- with respect to variable
156
+ inverseFunction {visma.functions.structure.Function} -- inverse of the function itself
157
+
158
+ Returns:
159
+ self {visma.functions.structure.Function} -- function itself(operand before inverse)
160
+ rToken {visma.functions.structure.Function} -- new RHS token
161
+ comment {string} -- steps comment
162
+ """
163
+ rToken.coefficient /= self.coefficient
164
+ rToken.power /= self.power
165
+ invFunc = copy.deepcopy(inverseFunction)
166
+ invFunc.operand = rToken
167
+ self = self.operand
168
+ comment = "Applying inverse function on LHS and RHS"
169
+ return self, rToken, comment
170
+
171
+
172
+ ###################
173
+ # Mixed Functions #
174
+ ###################
175
+ # For example: sec(x)*tan(x) or sin(x)*log(x) or e^(x)*cot(x)
176
+ # Will be taken care by function Expression
177
+
178
+
179
+ class Expression(Function):
180
+ """Class for expression type
181
+ """
182
+
183
+ def __init__(self, tokens=None, coefficient=None, power=None):
184
+ super().__init__()
185
+ if coefficient is not None:
186
+ self.coefficient = coefficient
187
+ else:
188
+ self.coefficient = 1
189
+ if power is not None:
190
+ self.power = power
191
+ else:
192
+ self.power = 1
193
+ self.tokens = []
194
+ if tokens is not None:
195
+ self.tokens.extend(tokens)
196
+
197
+ def __str__(self):
198
+ represent = ""
199
+ if self.coefficient != 1:
200
+ represent += str(self.coefficient) + "*"
201
+ represent += "{("
202
+ for token in self.tokens:
203
+ represent += token.__str__()
204
+ represent += ")}"
205
+ if self.power != 1:
206
+ represent += "^" + "{" + str(self.power) + "}"
207
+ if self.operand is not None:
208
+ represent += "{(" + str(self.operand) + ")}"
209
+ return represent
210
+
211
+ def __mul__(self, other):
212
+ from visma.functions.constant import Constant
213
+ from visma.functions.variable import Variable
214
+
215
+ if isinstance(other, Expression):
216
+ result = Expression()
217
+ for i, _ in enumerate(self.tokens):
218
+ c = copy.deepcopy(self)
219
+ d = copy.deepcopy(other)
220
+ if isinstance(c.tokens[i], Constant) or isinstance(c.tokens[i], Variable):
221
+ result.tokens.extend([c.tokens[i] * d])
222
+ else:
223
+ result.tokens.extend([c.tokens[i]])
224
+ return result
225
+
226
+ def __add__(self, other):
227
+ from visma.functions.constant import Constant
228
+ from visma.functions.variable import Variable
229
+ from visma.functions.operator import Plus
230
+ if isinstance(other, Expression):
231
+ result = Expression()
232
+ for tok1 in self.tokens:
233
+ result.tokens.append(tok1)
234
+ result.tokens.append(Plus())
235
+ if (other.tokens[0], Constant):
236
+ if (other.tokens[0].value < 0):
237
+ result.tokens.pop()
238
+ elif (other.tokens[0], Variable):
239
+ if (other.tokens[0].coefficient < 0):
240
+ result.tokens.pop()
241
+ for tok2 in other.tokens:
242
+ result.tokens.append(tok2)
243
+ return result
244
+ elif isinstance(other, Constant):
245
+ result = self
246
+ constFound = False
247
+ for i, _ in enumerate(self.tokens):
248
+ if isinstance(self.tokens[i], Constant):
249
+ self.tokens[i] += other
250
+ constFound = True
251
+ if constFound:
252
+ return result
253
+ else:
254
+ result.tokens += other
255
+ return result
256
+ elif isinstance(other, Variable):
257
+ result = Expression()
258
+ result = other + self
259
+ return result
260
+
261
+ def __sub__(self, other):
262
+ from visma.functions.constant import Constant
263
+ from visma.functions.variable import Variable
264
+ from visma.functions.operator import Plus, Minus
265
+ if isinstance(other, Expression):
266
+ result = Expression()
267
+ for tok1 in self.tokens:
268
+ result.tokens.append(tok1)
269
+ for _, x in enumerate(other.tokens):
270
+ if x.value == '+':
271
+ x.value = '-'
272
+ elif x.value == '-':
273
+ x.value = '+'
274
+ result.tokens.append(Minus())
275
+ if (isinstance(other.tokens[0], Constant)):
276
+ if (other.tokens[0].value < 0):
277
+ result.tokens[-1] = Plus()
278
+ other.tokens[0].value = abs(other.tokens[0].value)
279
+ elif (isinstance(other.tokens[0], Variable)):
280
+ if (other.tokens[0].coefficient < 0):
281
+ result.tokens[-1] = Plus()
282
+ other.tokens[0].coefficient = abs(other.tokens[0].coefficient)
283
+ return result
284
+ elif isinstance(other, Constant):
285
+ result = self
286
+ result += (Constant(0) - other)
287
+ return result
288
+ elif isinstance(other, Variable):
289
+ result = self
290
+ a = Constant(0) - other
291
+ result = a + result
292
+ return result
293
+
294
+
295
+ class Equation(Expression):
296
+ """Class for equation type
297
+ """
298
+
299
+ def __init__(self):
300
+ super().__init__()
301
+ self.tokens = None
data/visma/functions/trigonometry.py ADDED
@@ -0,0 +1,300 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import copy
3
+ from visma.functions.structure import FuncOp, Expression
4
+ from visma.functions.operator import Multiply, Plus
5
+ from visma.functions.constant import Constant
6
+ from visma.functions. exponential import NaturalLog
7
+
8
+ ##########################
9
+ # Trignometric Functions #
10
+ ##########################
11
+
12
+
13
+ class Trigonometric(FuncOp):
14
+ """Parent Class for all the Trigonometric Classes like Sine, Cosine, Tangent etc.
15
+
16
+ """
17
+ pass
18
+
19
+
20
+ class Sine(Trigonometric):
21
+ """Class for sin function -- sin(...)
22
+
23
+ Extends:
24
+ Trigonometric
25
+ """
26
+
27
+ def __init__(self):
28
+ super().__init__()
29
+ self.value = 'sin'
30
+
31
+ def inverse(self, rToken, wrtVar, inverseFunction=None):
32
+ inverseFunction = ArcSin()
33
+ super().inverse(self, rToken, wrtVar, inverseFunction)
34
+
35
+ def calculate(self, val):
36
+ return self.coefficient * ((math.sin(val))**self.power)
37
+
38
+ def differentiate(self, wrtVar=None):
39
+ super().differentiate()
40
+ result = copy.deepcopy(self)
41
+ result.__class__ = Cosine
42
+ result.value = 'cos'
43
+ result.coefficient = 1
44
+ return result
45
+
46
+ def integrate(self, wrtVar=None):
47
+ term1 = Constant(-1, 1, 1)
48
+ term2 = copy.deepcopy(self)
49
+ term2.__class__ = Cosine
50
+ term2.value = 'cos'
51
+ term2.coefficient = 1
52
+ result = Expression()
53
+ result.tokens = [term1, Multiply(), term2]
54
+ return result
55
+
56
+
57
+ class Cosine(Trigonometric):
58
+ """Class for cos function -- cos(...)
59
+
60
+ Extends:
61
+ Trigonometric
62
+ """
63
+
64
+ def __init__(self):
65
+ super().__init__()
66
+ self.value = 'cos'
67
+
68
+ def inverse(self, RHS):
69
+ super().inverse(RHS)
70
+ self.__class__ = ArcCos
71
+
72
+ def differentiate(self, wrtVar):
73
+ term1 = Constant(-1, 1, 1)
74
+ term2 = copy.deepcopy(self)
75
+ term2.__class__ = Sine
76
+ term2.value = 'sin'
77
+ result = Expression()
78
+ result.tokens = [term1, Multiply(), term2]
79
+ return result
80
+
81
+ def integrate(self, wrtVar):
82
+ result = copy.deepcopy(self)
83
+ result.__class__ = Sine
84
+ result.value = 'sin'
85
+ result.coefficient = 1
86
+ return result
87
+
88
+ def calculate(self, val):
89
+ return self.coefficient * ((math.cos(val))**self.power)
90
+
91
+
92
+ class Tangent(Trigonometric):
93
+ """Class for tan function -- tan(...)
94
+
95
+ Extends:
96
+ Trigonometric
97
+ """
98
+
99
+ def __init__(self):
100
+ super().__init__()
101
+ self.value = 'tan'
102
+
103
+ def inverse(self, RHS):
104
+ super().inverse(RHS)
105
+ self.__class__ = ArcTan
106
+
107
+ def differentiate(self, wrtVar):
108
+ result = copy.deepcopy(self)
109
+ result.__class__ = Secant
110
+ result.value = 'sec'
111
+ result.coefficient = 1
112
+ result.power = 2
113
+ return result
114
+
115
+ def integrate(self, wrtVar):
116
+ term1 = Constant(-1, 1, 1)
117
+ term2 = NaturalLog()
118
+ term3 = Cosine()
119
+ term3.operand = self.operand
120
+ term2.operand = term3
121
+ term2.power = 1
122
+ term2.coefficient = 1
123
+ result = Expression()
124
+ result.tokens = [term1, Multiply(), term2]
125
+ return result
126
+
127
+ def calculate(self, val):
128
+ return self.coefficient * ((math.tan(val))**self.power)
129
+
130
+
131
+ class Cotangent(Trigonometric):
132
+ """Class for cot function -- cot(...)
133
+
134
+ Extends:
135
+ Trigonometric
136
+ """
137
+
138
+ def __init__(self):
139
+ super().__init__()
140
+ self.value = 'cot'
141
+
142
+ def inverse(self, RHS):
143
+ super().inverse(RHS)
144
+ self.__class__ = ArcCot
145
+
146
+ def differentiate(self, wrtVar):
147
+ term1 = Constant(-1, 1, 1)
148
+ term2 = copy.deepcopy(self)
149
+ term2.__class__ = Cosecant
150
+ term2.value = 'csc'
151
+ term2.coefficient = 1
152
+ term2.power = 2
153
+ result = Expression()
154
+ result.tokens = [term1, Multiply(), term2]
155
+ return result
156
+
157
+ def integrate(self, wrtVar):
158
+ result = NaturalLog()
159
+ term1 = Sine()
160
+ term1.operand = self.operand
161
+ term1.power = 1
162
+ term1.coefficient = 1
163
+ result.operand = term1
164
+ return result
165
+
166
+ def calculate(self, val):
167
+ return self.coefficient * ((math.cot(val))**self.power)
168
+
169
+
170
+ class Cosecant(Trigonometric):
171
+ """Class for csc function -- csc(...)
172
+
173
+ Extends:
174
+ Trigonometric
175
+ """
176
+
177
+ def __init__(self):
178
+ super().__init__()
179
+ self.value = 'csc'
180
+
181
+ def inverse(self, RHS):
182
+ super().inverse(RHS)
183
+ self.__class__ = ArcCosec
184
+
185
+ def differentiate(self, wrtVar):
186
+ term1 = Constant(-1, 1, 1)
187
+ term2 = Cosecant()
188
+ term2.operand = self.operand
189
+ term2.coefficient = 1
190
+ term3 = Cotangent()
191
+ term3.operand = self.operand
192
+ term3.coefficient = 1
193
+ result = Expression()
194
+ result.tokens = [term1, Multiply(), term2, Multiply(), term3]
195
+ return result
196
+
197
+ def integrate(self, wrtVar):
198
+ term1 = Constant(-1, 1, 1)
199
+ term2 = NaturalLog()
200
+ result = Expression()
201
+ term3 = Cosecant()
202
+ term3.operand = self.operand
203
+ term4 = Cotangent()
204
+ term4.operand = self.operand
205
+ inExpression = Expression()
206
+ inExpression.tokens = [term3, Plus(), term4]
207
+ term2.operand = inExpression
208
+ term2.power = 1
209
+ term2.coefficient = 1
210
+ result.tokens = [term1, Multiply(), term2]
211
+ return result
212
+
213
+ def __mul__(self, other):
214
+ if isinstance(other, Cotangent):
215
+ result = Expression()
216
+ result.coefficient = self.coefficient * other.coefficient
217
+ c = copy.deepcopy(self)
218
+ d = copy.deepcopy(other)
219
+ result.tokens.extend([c, Multiply(), d])
220
+ return result
221
+
222
+ def calculate(self, val):
223
+ return self.coefficient * ((math.cosec(val))**self.power)
224
+
225
+
226
+ class Secant(Trigonometric):
227
+ """Class for sec function -- sec(...)
228
+
229
+ Extends:
230
+ Trigonometric
231
+ """
232
+
233
+ def __init__(self):
234
+ super().__init__()
235
+ self.value = 'sec'
236
+
237
+ def inverse(self, RHS):
238
+ super().inverse(RHS)
239
+ self.__class__ = ArcSec
240
+
241
+ def differentiate(self, wrtVar):
242
+ term1 = Tangent()
243
+ term1.operand = self.operand
244
+ term2 = Secant()
245
+ term2.operand = self.operand
246
+ resultTerm = term2 * term1
247
+ return resultTerm
248
+
249
+ def integrate(self, wrtVar):
250
+ resultTerm = NaturalLog()
251
+ term3 = Secant()
252
+ term3.operand = self.operand
253
+ term4 = Tangent()
254
+ term4.operand = self.operand
255
+ inExpression = Expression()
256
+ inExpression.tokens = [term3, Plus(), term4]
257
+ resultTerm.operand = inExpression
258
+ resultTerm.power = 1
259
+ resultTerm.coefficient = 1
260
+ return resultTerm
261
+
262
+ def __mul__(self, other):
263
+ if isinstance(other, Tangent):
264
+ result = Expression()
265
+ Expression.coefficient = self.coefficient * other.coefficient
266
+ c = copy.deepcopy(self)
267
+ d = copy.deepcopy(other)
268
+ result.tokens.extend([c, Multiply(), d])
269
+ return result
270
+
271
+ def calculate(self, val):
272
+ return self.coefficient * ((math.sec(val))**self.power)
273
+
274
+ ##################################
275
+ # Inverse Trignometric Functions #
276
+ ##################################
277
+
278
+
279
+ class ArcSin(Trigonometric):
280
+ pass
281
+
282
+
283
+ class ArcCos(Trigonometric):
284
+ pass
285
+
286
+
287
+ class ArcTan(Trigonometric):
288
+ pass
289
+
290
+
291
+ class ArcCot(Trigonometric):
292
+ pass
293
+
294
+
295
+ class ArcSec(Trigonometric):
296
+ pass
297
+
298
+
299
+ class ArcCsc(Trigonometric):
300
+ pass
data/visma/functions/variable.py ADDED
@@ -0,0 +1,280 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ from visma.functions.structure import Function, Expression
3
+ from visma.functions.exponential import Logarithm
4
+ from visma.functions.operator import Plus, Minus, Multiply, Divide, Binary
5
+
6
+
7
+ ############
8
+ # Variable #
9
+ ############
10
+
11
+
12
+ class Variable(Function):
13
+ """Class for variable function type
14
+
15
+ Examples:
16
+ x
17
+ 2x^2
18
+ 3xyz^3
19
+
20
+ Extends:
21
+ Function
22
+ """
23
+
24
+ def __init__(self, coeff=None, value=None, power=None):
25
+ super().__init__()
26
+ # Report
27
+ self.coefficient = 1
28
+ if coeff is not None:
29
+ self.coefficient = coeff
30
+ self.value = []
31
+ if value is not None:
32
+ self.value.append(value)
33
+ self.power = []
34
+ if power is not None:
35
+ self.power.append(power)
36
+
37
+ def inverse(self, rToken, wrtVar):
38
+ l2rVar = Variable()
39
+ for i, var in enumerate(self.value):
40
+ if var != wrtVar:
41
+ l2rVar.value.append(self.value.pop(i))
42
+ l2rVar.power.append(self.power.pop(i))
43
+ if l2rVar.value != []:
44
+ rToken = Expression([rToken, Divide(), l2rVar])
45
+ rToken.coefficient /= (self.coefficient)**(1/self.power[0])
46
+ rToken.power /= self.power[0]
47
+ self.coefficient = 1
48
+ self.power[0] = 1
49
+ comment = "Therefore, " + r"$" + wrtVar + r"$" + " can be written as:"
50
+ return self, rToken, comment
51
+
52
+ def differentiate(self, wrtVar):
53
+ from visma.functions.constant import Constant, Zero
54
+ result = copy.deepcopy(self)
55
+ if wrtVar in result.functionOf():
56
+ for i, var in enumerate(result.value):
57
+ if var == wrtVar:
58
+ result.coefficient *= result.power[i]
59
+ result.power[i] -= 1
60
+ if(result.power[i] == 0):
61
+ del result.power[i]
62
+ del result.value[i]
63
+ if result.value == []:
64
+ result.__class__ = Constant
65
+ result.value = result.coefficient
66
+ result.coefficient = 1
67
+ result.power = 1
68
+ else:
69
+ result = Zero()
70
+ return result
71
+
72
+ def integrate(self, wrtVar=None):
73
+ from visma.functions.constant import Constant
74
+ result = copy.deepcopy(self)
75
+ log = False
76
+ for i, var in enumerate(result.value):
77
+ if var == wrtVar:
78
+ if(result.power[i] == -1):
79
+ log = True
80
+ funcLog = Logarithm()
81
+ funcLog.operand = Variable()
82
+ funcLog.operand.coefficient = 1
83
+ funcLog.operand.value.append(result.value[i])
84
+ funcLog.operand.power.append(1)
85
+ del result.power[i]
86
+ del result.value[i]
87
+ if result.value == []:
88
+ result.__class__ = Constant
89
+ result.value = result.coefficient
90
+ result.coefficient = 1
91
+ result.power = 1
92
+ result = [result]
93
+ funcJoin = Binary()
94
+ funcJoin.value = '*'
95
+ result.append(funcJoin)
96
+ result.append(funcLog)
97
+ else:
98
+ result.power[i] += 1
99
+ result.coefficient /= result.power[i]
100
+ print(result)
101
+ return result, log
102
+
103
+ def calculate(self, val):
104
+ return self.coefficient * ((val**(self.power)))
105
+
106
+ def __radd__(self, other):
107
+ return self + other
108
+
109
+ def __add__(self, other):
110
+ from visma.functions.constant import Constant
111
+ if isinstance(other, Variable):
112
+ sortedValuesSelf = sorted(self.value)
113
+ sortedValuesOther = sorted(other.value)
114
+ if self.coefficient == 0:
115
+ return Constant(0, 1, 1)
116
+ if (self.power == other.power) & (sortedValuesSelf == sortedValuesOther):
117
+ if self.before == '-':
118
+ self.coefficient -= other.coefficient
119
+ else:
120
+ self.coefficient += other.coefficient
121
+ return self
122
+ elif isinstance(other, Constant):
123
+ expression = Expression()
124
+ expression.tokens = [self]
125
+ expression.tokens.extend([Plus(), other])
126
+ self = expression
127
+ return expression
128
+ elif isinstance(other, Expression):
129
+ expression = Expression()
130
+ expression.tokens = [self]
131
+ for i, token in enumerate(other.tokens):
132
+ if isinstance(token, Variable):
133
+ tokenValueSorted = sorted(token.value)
134
+ selfValueSorted = sorted(self.value)
135
+ if (token.power == self.power) & (tokenValueSorted == selfValueSorted):
136
+ if other.tokens[i - 1].value == '+' or (i == 0):
137
+ self.coefficient += other.tokens[i].coefficient
138
+ elif other.tokens[i - 1].value == '-':
139
+ self.coefficient -= other.tokens[i].coefficient
140
+ else:
141
+ if other.tokens[i-1].value == '+' or i == 0:
142
+ expression.tokens.extend([Plus(), Variable(token)])
143
+ elif other.tokens[i-1].value == '-':
144
+ expression.tokens.extend([Minus(), Variable(token)])
145
+ elif not isinstance(token, Binary):
146
+ if other.tokens[i - 1].value == '+' or (i == 0):
147
+ expression.tokens.extend([Plus(), token])
148
+ elif other.tokens[i - 1].value == '-':
149
+ expression.tokens.extend([Minus(), token])
150
+ expression.tokens[0] = self
151
+ self = expression
152
+ return expression
153
+
154
+ def __rsub__(self, other):
155
+ from visma.functions.constant import Constant
156
+ return Constant(0, 1, 1) - self + other
157
+
158
+ def __sub__(self, other):
159
+ from visma.functions.constant import Constant
160
+ if isinstance(other, Variable):
161
+ otherValueSorted = sorted(other.value)
162
+ selfValueSorted = sorted(self.value)
163
+ if (other.power == self.power) & (selfValueSorted == otherValueSorted):
164
+ self = self + Constant(-1, 1, 1) * other
165
+ return self
166
+ else:
167
+ expression = Expression()
168
+ expression.tokens = [self]
169
+ expression.tokens.extend([Minus(), other])
170
+ self = expression
171
+ return expression
172
+ elif isinstance(other, Constant):
173
+ if other.isZero():
174
+ return self
175
+ expression = Expression()
176
+ expression.tokens = [self]
177
+ expression.tokens.extend([Minus(), other])
178
+ self = expression
179
+ return expression
180
+ elif isinstance(other, Expression):
181
+ expression = Expression()
182
+ expression.tokens = [self]
183
+ for i, token in enumerate(other.tokens):
184
+ if isinstance(token, Variable):
185
+ tokenValueSorted = sorted(token.value)
186
+ selfValueSorted = sorted(self.value)
187
+ if (token.power == self.power) & (tokenValueSorted == selfValueSorted):
188
+ if other.tokens[i - 1].value == '+' or (i == 0):
189
+ self.coefficient -= other.tokens[i].coefficient
190
+ elif other.tokens[i - 1].value == '-':
191
+ self.coefficient += other.tokens[i].coefficient
192
+ else:
193
+ if other.tokens[i-1].value == '+' or i == 0:
194
+ expression.tokens.extend([Plus(), Variable(token)])
195
+ elif other.tokens[i-1].value == '-':
196
+ expression.tokens.extend([Minus(), Variable(token)])
197
+ elif not isinstance(token, Binary):
198
+ if other.tokens[i - 1].value == '+' or (i == 0):
199
+ expression.tokens.extend([Minus(), token])
200
+ elif other.tokens[i - 1].value == '-':
201
+ expression.tokens.extend([Plus(), token])
202
+ expression.tokens[0] = self
203
+ self = expression
204
+ return expression
205
+
206
+ def __rmul__(self, other):
207
+ return self * other
208
+
209
+ def __mul__(self, other):
210
+ from visma.io.checks import isNumber
211
+ from visma.functions.constant import Constant
212
+
213
+ if isinstance(other, Variable):
214
+ for j, var in enumerate(other.value):
215
+ found = False
216
+ for k, var2 in enumerate(self.value):
217
+ self.coefficient *= other.coefficient
218
+ if var == var2:
219
+ if isNumber(other.power[j]) and isNumber(self.power[k]):
220
+ self.power[k] += other.power[j]
221
+ if self.power[k] == 0:
222
+ del self.power[k]
223
+ del self.value[k]
224
+ found = True
225
+ break
226
+ if not found:
227
+ self.value.append(other.value[j])
228
+ self.power.append(other.power[j])
229
+
230
+ if len(self.value) == 0:
231
+ result = Constant(self.coefficient)
232
+ result.scope = self.scope
233
+ result.power = 1
234
+ result.value = self.coefficient
235
+ self = result
236
+ return self
237
+ elif isinstance(other, Constant):
238
+ self.coefficient *= other.calculate()
239
+ return self
240
+ elif isinstance(other, Expression):
241
+ result = Expression()
242
+ for _, token in enumerate(other.tokens):
243
+ if isinstance(token, Variable) or isinstance(token, Constant):
244
+ c = copy.deepcopy(self)
245
+ result.tokens.extend([c * token])
246
+ else:
247
+ result.tokens.extend([token])
248
+ return result
249
+
250
+ def __pow__(self, other):
251
+ from visma.functions.constant import Constant
252
+
253
+ if isinstance(other, Constant):
254
+ if other.value == -1:
255
+ one = Constant(1, 1, 1)
256
+ result = Variable()
257
+ result.value = self.value
258
+ result.coefficient = one.calculate() / self.coefficient
259
+ result.power = []
260
+ for pows in self.power:
261
+ result.power.append(-pows)
262
+ return result
263
+
264
+ def __rtruediv__(self, other):
265
+ pass # TODO : Add code for expression / variable
266
+
267
+ def __truediv__(self, other):
268
+ from visma.functions.constant import Constant
269
+ if isinstance(other, Variable) or isinstance(other, Constant):
270
+ self = self * (other ** Constant(-1, 1, 1))
271
+ return self
272
+
273
+ elif isinstance(other, Expression):
274
+ expression = Expression()
275
+ self.coefficient /= other.coefficient
276
+ other.power *= -1
277
+ expression.tokens = [self]
278
+ expression.tokens.extend([Multiply(), other])
279
+ self = expression
280
+ return expression
data/visma/gui/__init__.py ADDED
File without changes
data/visma/gui/cli.py ADDED
@@ -0,0 +1,267 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import sys
3
+ from PyQt5.QtWidgets import QMainWindow, QApplication, QWidget, QTabWidget, QVBoxLayout
4
+ from visma.calculus.differentiation import differentiate
5
+ from visma.calculus.integration import integrate
6
+ from visma.discreteMaths.combinatorics import factorial, combination, permutation
7
+ from visma.io.checks import checkTypes
8
+ from visma.io.tokenize import tokenizer, getLHSandRHS
9
+ from visma.io.parser import resultStringCLI, resultMatrixString
10
+ from visma.simplify.simplify import simplify, simplifyEquation
11
+ from visma.simplify.addsub import addition, additionEquation, subtraction, subtractionEquation
12
+ from visma.simplify.muldiv import multiplication, multiplicationEquation, division, divisionEquation
13
+ from visma.solvers.solve import solveFor
14
+ from visma.solvers.polynomial.roots import rootFinder
15
+ from visma.solvers.simulEqn import simulSolver
16
+ from visma.transform.factorization import factorize
17
+ from visma.matrix.structure import Matrix, SquareMat
18
+ from visma.matrix.operations import simplifyMatrix, addMatrix, subMatrix, multiplyMatrix
19
+ from visma.gui.plotter import plotFigure2D, plotFigure3D, plot
20
+
21
+
22
+ class App(QMainWindow):
23
+ def __init__(self, tokens):
24
+ super().__init__()
25
+ self.setWindowTitle('Plots')
26
+ self.setGeometry(300, 300, 450, 450)
27
+ self.table_widget = PlotWindow(self, tokens)
28
+ self.setCentralWidget(self.table_widget)
29
+ self.show()
30
+
31
+
32
+ class PlotWindow(QWidget):
33
+ def __init__(self, parent, tokens):
34
+ super(QWidget, self).__init__(parent)
35
+ self.layout = QVBoxLayout(self)
36
+ self.tabPlot = QTabWidget()
37
+ self.tabPlot.tab1 = QWidget()
38
+ self.tabPlot.tab2 = QWidget()
39
+ self.tabPlot.resize(300, 200)
40
+ self.tabPlot.addTab(self.tabPlot.tab1, "2D-Plot")
41
+ self.tabPlot.addTab(self.tabPlot.tab2, "3D-Plot")
42
+ self.tabPlot.tab1.setLayout(plotFigure2D(self))
43
+ self.tabPlot.tab2.setLayout(plotFigure3D(self))
44
+ self.layout.addWidget(self.tabPlot)
45
+ plot(self, tokens)
46
+
47
+
48
+ def commandExec(command):
49
+ operation = command.split('(', 1)[0]
50
+ inputEquation = command.split('(', 1)[1][:-1]
51
+ matrix = False # True when matrices operations are present in the code.
52
+ if operation[0:4] == 'mat_':
53
+ matrix = True
54
+
55
+ if not matrix:
56
+ """
57
+ This part handles the cases when VisMa is NOT dealing with matrices.
58
+
59
+ Boolean flags used in code below:
60
+ simul -- {True} when VisMa is dealing with simultaneous equations & {False} in all other cases
61
+ """
62
+ varName = None
63
+ if ',' in inputEquation:
64
+ varName = inputEquation.split(',')[1]
65
+ varName = "".join(varName.split())
66
+ inputEquation = inputEquation.split(',')[0]
67
+
68
+ simul = False # True when simultaneous equation is present
69
+ if (inputEquation.count(';') == 2) and (operation == 'solve'):
70
+ simul = True
71
+ afterSplit = inputEquation.split(';')
72
+ eqStr1 = afterSplit[0]
73
+ eqStr2 = afterSplit[1]
74
+ eqStr3 = afterSplit[2]
75
+
76
+ lhs = []
77
+ rhs = []
78
+ solutionType = ''
79
+ lTokens = []
80
+ rTokens = []
81
+ equationTokens = []
82
+ comments = []
83
+ if simul:
84
+ tokens = [tokenizer(eqStr1), tokenizer(eqStr2), tokenizer(eqStr3)]
85
+ else:
86
+ tokens = tokenizer(inputEquation)
87
+ if '=' in inputEquation:
88
+ lhs, rhs = getLHSandRHS(tokens)
89
+ lTokens = lhs
90
+ rTokens = rhs
91
+ _, solutionType = checkTypes(lhs, rhs)
92
+ else:
93
+ solutionType = 'expression'
94
+ lhs, rhs = getLHSandRHS(tokens)
95
+ lTokens = lhs
96
+ rTokens = rhs
97
+
98
+ if operation == 'plot':
99
+ app = QApplication(sys.argv)
100
+ App(tokens)
101
+ sys.exit(app.exec_())
102
+ elif operation == 'simplify':
103
+ if solutionType == 'expression':
104
+ tokens, _, _, equationTokens, comments = simplify(tokens)
105
+ else:
106
+ lTokens, rTokens, _, _, equationTokens, comments = simplifyEquation(lTokens, rTokens)
107
+ elif operation == 'addition':
108
+ if solutionType == 'expression':
109
+ tokens, _, _, equationTokens, comments = addition(tokens, True)
110
+ else:
111
+ lTokens, rTokens, _, _, equationTokens, comments = additionEquation(lTokens, rTokens, True)
112
+ elif operation == 'subtraction':
113
+ if solutionType == 'expression':
114
+ tokens, _, _, equationTokens, comments = subtraction(tokens, True)
115
+ else:
116
+ lTokens, rTokens, _, _, equationTokens, comments = subtractionEquation(lTokens, rTokens, True)
117
+ elif operation == 'multiplication':
118
+ if solutionType == 'expression':
119
+ tokens, _, _, equationTokens, comments = multiplication(tokens, True)
120
+ else:
121
+ lTokens, rTokens, _, _, equationTokens, comments = multiplicationEquation(lTokens, rTokens, True)
122
+ elif operation == 'division':
123
+ if solutionType == 'expression':
124
+ tokens, _, _, equationTokens, comments = division(tokens, True)
125
+ else:
126
+ lTokens, rTokens, _, _, equationTokens, comments = divisionEquation(lTokens, rTokens, True)
127
+ elif operation == 'factorize':
128
+ tokens, _, _, equationTokens, comments = factorize(tokens)
129
+ elif operation == 'find-roots':
130
+ lTokens, rTokens, _, _, equationTokens, comments = rootFinder(lTokens, rTokens)
131
+ elif operation == 'solve':
132
+ if simul:
133
+ if varName is not None:
134
+ _, equationTokens, comments = simulSolver(tokens[0], tokens[1], tokens[2], varName)
135
+ else:
136
+ _, equationTokens, comments = simulSolver(tokens[0], tokens[1], tokens[2])
137
+ solutionType = equationTokens
138
+ else:
139
+ lhs, rhs = getLHSandRHS(tokens)
140
+ lTokens, rTokens, _, _, equationTokens, comments = solveFor(lTokens, rTokens, varName)
141
+ elif operation == 'factorial':
142
+ tokens, _, _, equationTokens, comments = factorial(tokens)
143
+ elif operation == 'combination':
144
+ n = tokenizer(inputEquation)
145
+ r = tokenizer(varName)
146
+ tokens, _, _, equationTokens, comments = combination(n, r)
147
+ elif operation == 'permutation':
148
+ n = tokenizer(inputEquation)
149
+ r = tokenizer(varName)
150
+ tokens, _, _, equationTokens, comments = permutation(n, r)
151
+ elif operation == 'integrate':
152
+ lhs, rhs = getLHSandRHS(tokens)
153
+ lTokens, _, _, equationTokens, comments = integrate(lTokens, varName)
154
+ elif operation == 'differentiate':
155
+ lhs, rhs = getLHSandRHS(tokens)
156
+ lTokens, _, _, equationTokens, comments = differentiate(lTokens, varName)
157
+ if operation != 'plot':
158
+ # FIXME: when either plotting window or GUI window is opened from CLI and after it is closed entire CLI exits, it would be better if it is avoided
159
+ final_string = resultStringCLI(equationTokens, operation, comments, solutionType, simul)
160
+ print(final_string)
161
+ else:
162
+ """
163
+ This part handles the cases when VisMa is dealing with matrices.
164
+
165
+ Boolean flags used in code below:
166
+ dualOperand -- {True} when the matrix operations require two operands (used in operations like addition, subtraction etc)
167
+ nonMatrixResult -- {True} when the result after performing operations on the Matrix is not a Matrix (in operations like Determinant, Trace etc.)
168
+ scalarOperations -- {True} when one of the operand in a scalar (used in operations like Scalar Addition, Scalar Subtraction etc.)
169
+ """
170
+ operation = operation[4:]
171
+ dualOperand = False
172
+ nonMatrixResult = False
173
+ scalarOperations = False
174
+ if ', ' in inputEquation:
175
+ dualOperand = True
176
+ [inputEquation1, inputEquation2] = inputEquation.split(', ')
177
+ if '[' in inputEquation1:
178
+ inputEquation1 = inputEquation1[1:][:-1]
179
+ inputEquation1 = inputEquation1.split('; ')
180
+ matrixOperand1 = []
181
+ for row in inputEquation1:
182
+ row1 = row.split(' ')
183
+ for i, _ in enumerate(row1):
184
+ row1[i] = tokenizer(row1[i])
185
+ matrixOperand1.append(row1)
186
+ Matrix1 = Matrix()
187
+ Matrix1.value = matrixOperand1
188
+ inputEquation2 = inputEquation2[1:][:-1]
189
+ inputEquation2 = inputEquation2.split('; ')
190
+ matrixOperand2 = []
191
+ for row in inputEquation2:
192
+ row1 = row.split(' ')
193
+ for i, _ in enumerate(row1):
194
+ row1[i] = tokenizer(row1[i])
195
+ matrixOperand2.append(row1)
196
+ Matrix2 = Matrix()
197
+ Matrix2.value = matrixOperand2
198
+ Matrix1_copy = copy.deepcopy(Matrix1)
199
+ Matrix2_copy = copy.deepcopy(Matrix2)
200
+ else:
201
+ scalarOperations = True
202
+ scalar = inputEquation1
203
+ scalarTokens = scalar
204
+ # scalarTokens = tokenizer(scalar)
205
+ inputEquation2 = inputEquation2[1:][:-1]
206
+ inputEquation2 = inputEquation2.split('; ')
207
+ matrixOperand2 = []
208
+ for row in inputEquation2:
209
+ row1 = row.split(' ')
210
+ for i, _ in enumerate(row1):
211
+ row1[i] = tokenizer(row1[i])
212
+ matrixOperand2.append(row1)
213
+ Matrix2 = Matrix()
214
+ Matrix2.value = matrixOperand2
215
+ scalarTokens_copy = copy.deepcopy(scalarTokens)
216
+ Matrix2_copy = copy.deepcopy(Matrix2)
217
+
218
+ else:
219
+ inputEquation = inputEquation[1:][:-1]
220
+ inputEquation = inputEquation.split('; ')
221
+
222
+ matrixOperand = []
223
+ for row in inputEquation:
224
+ row1 = row.split(' ')
225
+ for i, _ in enumerate(row1):
226
+ row1[i] = tokenizer(row1[i])
227
+ matrixOperand.append(row1)
228
+
229
+ Matrix0 = Matrix()
230
+ Matrix0.value = matrixOperand
231
+ Matrix0_copy = copy.deepcopy(Matrix0)
232
+ if operation == 'simplify':
233
+ MatrixResult = simplifyMatrix(Matrix0)
234
+ elif operation == 'add':
235
+ MatrixResult = addMatrix(Matrix1, Matrix2)
236
+ elif operation == 'sub':
237
+ MatrixResult = subMatrix(Matrix1, Matrix2)
238
+ elif operation == 'mult':
239
+ MatrixResult = multiplyMatrix(Matrix1, Matrix2)
240
+ elif operation == 'determinant':
241
+ nonMatrixResult = True
242
+ sqMatrix = SquareMat()
243
+ sqMatrix.value = Matrix0.value
244
+ result = sqMatrix.determinant()
245
+ elif operation == 'trace':
246
+ nonMatrixResult = True
247
+ sqMatrix = SquareMat()
248
+ sqMatrix.value = Matrix0.value
249
+ result = sqMatrix.traceMat()
250
+ elif operation == 'inverse':
251
+ sqMatrix = SquareMat()
252
+ sqMatrix.value = Matrix0.value
253
+ MatrixResult = SquareMat()
254
+ MatrixResult = sqMatrix.inverse()
255
+
256
+ finalCLIstring = ''
257
+ if dualOperand:
258
+ if not scalarOperations:
259
+ finalCLIstring = resultMatrixString(operation=operation, operand1=Matrix1_copy, operand2=Matrix2_copy, result=MatrixResult)
260
+ else:
261
+ finalCLIstring = resultMatrixString(operation=operation, operand1=scalarTokens_copy, operand2=Matrix2_copy, result=MatrixResult)
262
+ else:
263
+ if nonMatrixResult:
264
+ finalCLIstring = resultMatrixString(operation=operation, operand1=Matrix0_copy, nonMatrixResult=True, result=result)
265
+ else:
266
+ finalCLIstring = resultMatrixString(operation=operation, operand1=Matrix0_copy, result=MatrixResult)
267
+ print(finalCLIstring)
data/visma/gui/logger.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import datetime
3
+ from PyQt5.QtWidgets import QTextEdit, QVBoxLayout
4
+
5
+
6
+ INFO = 20
7
+ WARNING = 30
8
+ ERROR = 40
9
+ CRITICAL = 50
10
+ THRES_LEV = 0
11
+ NAME = ''
12
+ logString = ''
13
+ now = datetime.datetime.now()
14
+
15
+
16
+ def logTextBox(workspace):
17
+ workspace.logBox = QTextEdit()
18
+ workspace.logBox.setReadOnly(True)
19
+ textLayout = QVBoxLayout()
20
+ textLayout.addWidget(workspace.logBox)
21
+ return textLayout
22
+
23
+
24
+ def setLogName(name):
25
+ global NAME
26
+ NAME = name
27
+
28
+
29
+ def setLevel(level):
30
+ global THRES_LEV
31
+ THRES_LEV = level
32
+
33
+
34
+ def info(msg, *args):
35
+ if INFO >= THRES_LEV:
36
+ info = logWriter('INFO', msg, *args)
37
+ return info
38
+
39
+
40
+ def warn(msg, *args):
41
+ if WARNING >= THRES_LEV:
42
+ warn = logWriter('WARNING', msg, *args)
43
+ return warn
44
+
45
+
46
+ def error(msg, *args):
47
+ if ERROR >= THRES_LEV:
48
+ error = logWriter('ERROR', msg, *args)
49
+ return error
50
+
51
+
52
+ def logWriter(levType, msg, *args):
53
+ try:
54
+ f = open(os.path.abspath("log.txt"), "a")
55
+ except IOError:
56
+ print('Can\'t open the log file')
57
+ logString = now.strftime("%Y-%m-%d %H:%M") + ' - ' + NAME + ' - ' + '%s: %s' % (levType, msg % args) + '\n'
58
+ f.write(logString)
59
+ return logString
data/visma/gui/plotter.py ADDED
@@ -0,0 +1,412 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+ from matplotlib.figure import Figure
4
+ from mpl_toolkits.mplot3d import Axes3D
5
+ from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas
6
+ from matplotlib.backends.backend_qt5agg import NavigationToolbar2QT as NavigationToolbar
7
+ from PyQt5.QtCore import Qt
8
+ from PyQt5.QtWidgets import QVBoxLayout, QLabel, QSlider, QSpinBox, QPushButton, QSplitter
9
+
10
+ from visma.io.checks import getVariables, getTokensType
11
+ from visma.io.tokenize import getLHSandRHS
12
+ from visma.functions.constant import Constant
13
+ from visma.functions.operator import Binary
14
+ from visma.functions.structure import FuncOp
15
+ from visma.functions.variable import Variable
16
+
17
+
18
+ def graphPlot(workspace, again, tokens):
19
+ """Function for plotting graphs in 2D and 3D space
20
+
21
+ 2D graphs are plotted for expression in one variable and equations in two variables. 3D graphs are plotted for expressions in two variables and equations in three variables.
22
+
23
+ Arguments:
24
+ workspace {QtWidgets.QWidget} -- main layout
25
+
26
+ Returns:
27
+ graphVars {list} -- variables to be plotted on the graph
28
+ func {numpy.array(2D)/function(3D)} -- equation converted to compatible data type for plotting
29
+ variables {list} -- variables in given equation
30
+ again {bool} -- True when an equation can be plotted in 2D and 3D both else False
31
+
32
+ Note:
33
+ The func obtained from graphPlot() function is of different type for 2D and 3D plots. For 2D, func is a numpy array, and for 3D, func is a function.
34
+ """
35
+ if tokens is None:
36
+ axisRange = workspace.axisRange
37
+ tokens = workspace.eqToks[-1]
38
+ else:
39
+ axisRange = [10, 10, 10, 30]
40
+ eqType = getTokensType(tokens)
41
+ LHStok, RHStok = getLHSandRHS(tokens)
42
+ variables = sorted(getVariables(LHStok, RHStok))
43
+ dim = len(variables)
44
+ if (dim == 1) or ((dim == 2) and eqType == "equation"):
45
+ if again:
46
+ variables.append('f(' + variables[0] + ')')
47
+ graphVars, func = plotIn3D(LHStok, RHStok, variables, axisRange)
48
+ else:
49
+ graphVars, func = plotIn2D(LHStok, RHStok, variables, axisRange)
50
+ if dim == 1:
51
+ variables.append('f(' + variables[0] + ')')
52
+ elif (dim == 2 and eqType == "expression") or ((dim == 3) and eqType == "equation"):
53
+ graphVars, func = plotIn3D(LHStok, RHStok, variables, axisRange)
54
+ if dim == 2:
55
+ variables.append('f(' + variables[0] + ',' + variables[1] + ')')
56
+ else:
57
+ return [], None, None
58
+ return graphVars, func, variables
59
+
60
+
61
+ def plotIn2D(LHStok, RHStok, variables, axisRange):
62
+ """Returns function array for 2D plots
63
+
64
+ Arguments:
65
+ LHStok {list} -- expression tokens
66
+ RHStok {list} -- expression tokens
67
+ variables {list} -- variables in equation
68
+ axisRange {list} -- axis limits
69
+
70
+ Returns:
71
+ graphVars {list} -- variables for plotting
72
+ func {numpy.array} -- equation to be plotted in 2D
73
+ """
74
+ xmin = -axisRange[0]
75
+ xmax = axisRange[0]
76
+ ymin = -axisRange[1]
77
+ ymax = axisRange[1]
78
+ xdelta = 0.01 * (xmax - xmin)
79
+ ydelta = 0.01 * (ymax - ymin)
80
+ xrange = np.arange(xmin, xmax, xdelta)
81
+ yrange = np.arange(ymin, ymax, ydelta)
82
+ graphVars = np.meshgrid(xrange, yrange)
83
+ function = getFunction(LHStok, RHStok, variables, graphVars, 2)
84
+ return graphVars, function
85
+
86
+
87
+ def plotIn3D(LHStok, RHStok, variables, axisRange):
88
+ """Returns function for 3D plots
89
+
90
+ Arguments:
91
+ LHStok {list} -- expression tokens
92
+ RHStok {list} -- expression tokens
93
+ variables {list} -- variables in equation
94
+ axisRange {list} -- axis limits
95
+
96
+ Returns:
97
+ graphVars {list} -- variables for plotting
98
+ func {function} -- equation to be plotted in 3D
99
+ """
100
+
101
+ xmin = -axisRange[0]
102
+ xmax = axisRange[0]
103
+ ymin = -axisRange[1]
104
+ ymax = axisRange[1]
105
+ zmin = -axisRange[2]
106
+ zmax = axisRange[2]
107
+ meshLayers = axisRange[3]
108
+ xrange = np.linspace(xmin, xmax, meshLayers)
109
+ yrange = np.linspace(ymin, ymax, meshLayers)
110
+ zrange = np.linspace(zmin, zmax, meshLayers)
111
+ graphVars = [xrange, yrange, zrange]
112
+
113
+ def func(x, y, z):
114
+ graphVars = [x, y, z]
115
+ return getFunction(LHStok, RHStok, variables, graphVars, 3)
116
+
117
+ return graphVars, func
118
+
119
+
120
+ def getFunction(LHStok, RHStok, eqnVars, graphVars, dim):
121
+ """Returns function for plotting
122
+
123
+ Arguments:
124
+ LHStok {list} -- expression tokens
125
+ RHStok {list} -- expression tokens
126
+ eqnVars {list} -- variables in equation
127
+ graphVars {list} -- variables for plotting
128
+ dim {int} -- dimenion of plot
129
+
130
+ Returns:
131
+ (LHS - RHS) {numpy.array(2D)/function(3D)} -- equation converted to compatible data type for plotting
132
+ """
133
+ LHS = getFuncExpr(LHStok, eqnVars, graphVars)
134
+ if len(eqnVars) == dim:
135
+ RHS = getFuncExpr(RHStok, eqnVars, graphVars)
136
+ elif len(eqnVars) == dim - 1:
137
+ RHS = graphVars[-1]
138
+ return LHS - RHS
139
+
140
+
141
+ def getFuncExpr(exprTok, eqnVars, graphVars):
142
+ """Allocates variables in equation to graph variables to give final function compatible for plotting
143
+
144
+ Arguments:
145
+ exprTok {list} -- expression tokens
146
+ eqnVars {list} -- variables in equation
147
+ graphVars {list} -- variables for plotting
148
+
149
+ Returns:
150
+ expr {numpy.array(2D)/function(3D)} -- expression converted to compatible data type for plotting
151
+ """
152
+ expr = 0
153
+ coeff = 1
154
+ for token in exprTok:
155
+ if isinstance(token, Variable):
156
+ varProduct = 1
157
+ for value, power in zip(token.value, token.power):
158
+ varProduct *= graphVars[eqnVars.index(value)]**power
159
+ expr += coeff * token.coefficient * varProduct
160
+ elif isinstance(token, Constant):
161
+ expr += coeff * token.value
162
+ elif isinstance(token, FuncOp):
163
+ pass
164
+ elif isinstance(token, Binary) and token.value == '-':
165
+ coeff = -1
166
+ elif isinstance(token, Binary) and token.value == '+':
167
+ coeff = 1
168
+ return expr
169
+
170
+
171
+ #######
172
+ # GUI #
173
+ #######
174
+
175
+
176
+ def plotFigure2D(workspace):
177
+ """GUI layout for plot figure
178
+
179
+ Arguments:
180
+ workspace {QtWidgets.QWidget} -- main layout
181
+
182
+ Returns:
183
+ layout {QtWidgets.QVBoxLayout} -- contains matplot figure
184
+ """
185
+ workspace.figure2D = Figure()
186
+ workspace.canvas2D = FigureCanvas(workspace.figure2D)
187
+ # workspace.figure2D.patch.set_facecolor('white')
188
+
189
+ class NavigationCustomToolbar(NavigationToolbar):
190
+ toolitems = [t for t in NavigationToolbar.toolitems if t[0] in ()]
191
+
192
+ workspace.toolbar2D = NavigationCustomToolbar(workspace.canvas2D, workspace)
193
+ layout = QVBoxLayout()
194
+ layout.addWidget(workspace.canvas2D)
195
+ layout.addWidget(workspace.toolbar2D)
196
+ return layout
197
+
198
+
199
+ def plotFigure3D(workspace):
200
+ """GUI layout for plot figure
201
+
202
+ Arguments:
203
+ workspace {QtWidgets.QWidget} -- main layout
204
+
205
+ Returns:
206
+ layout {QtWidgets.QVBoxLayout} -- contains matplot figure
207
+ """
208
+ workspace.figure3D = Figure()
209
+ workspace.canvas3D = FigureCanvas(workspace.figure3D)
210
+ # workspace.figure3D.patch.set_facecolor('white')
211
+
212
+ class NavigationCustomToolbar(NavigationToolbar):
213
+ toolitems = [t for t in NavigationToolbar.toolitems if t[0] in ()]
214
+
215
+ workspace.toolbar3D = NavigationCustomToolbar(workspace.canvas3D, workspace)
216
+ layout = QVBoxLayout()
217
+ layout.addWidget(workspace.canvas3D)
218
+ layout.addWidget(workspace.toolbar3D)
219
+ return layout
220
+
221
+
222
+ def renderPlot(workspace, graphVars, func, variables, tokens=None):
223
+ """Renders plot for functions in 2D and 3D
224
+
225
+ Maps points from the numpy arrays for variables in given equation on the 2D/3D plot figure
226
+
227
+ Arguments:
228
+ workspace {QtWidgets.QWidget} -- main layout
229
+ graphVars {list} -- variables for plotting
230
+ dim {int} -- dimenion of plot
231
+ variables {list} -- variables in equation
232
+ """
233
+ if len(graphVars) == 2:
234
+ X, Y = graphVars[0], graphVars[1]
235
+ ax = workspace.figure2D.add_subplot(111)
236
+ ax.clear()
237
+ ax.contour(X, Y, func, [0])
238
+ ax.grid()
239
+ ax.set_xlabel(r'$' + variables[0] + '$')
240
+ ax.set_ylabel(r'$' + variables[1] + '$')
241
+ workspace.figure2D.set_tight_layout({"pad": 1}) # removes extra padding
242
+ workspace.canvas2D.draw()
243
+ workspace.tabPlot.setCurrentIndex(0)
244
+ elif len(graphVars) == 3:
245
+ xrange = graphVars[0]
246
+ yrange = graphVars[1]
247
+ zrange = graphVars[2]
248
+ ax = Axes3D(workspace.figure3D)
249
+ for z in zrange:
250
+ X, Y = np.meshgrid(xrange, yrange)
251
+ Z = func(X, Y, z)
252
+ ax.contour(X, Y, Z + z, [z], zdir='z')
253
+ for y in yrange:
254
+ X, Z = np.meshgrid(xrange, zrange)
255
+ Y = func(X, y, Z)
256
+ ax.contour(X, Y + y, Z, [y], zdir='y')
257
+ for x in xrange:
258
+ Y, Z = np.meshgrid(yrange, zrange)
259
+ X = func(x, Y, Z)
260
+ ax.contour(X + x, Y, Z, [x], zdir='x')
261
+ if tokens is None:
262
+ axisRange = workspace.axisRange
263
+ else:
264
+ axisRange = [10, 10, 10, 30]
265
+ xmin = -axisRange[0]
266
+ xmax = axisRange[0]
267
+ ymin = -axisRange[1]
268
+ ymax = axisRange[1]
269
+ zmin = -axisRange[2]
270
+ zmax = axisRange[2]
271
+ ax.set_xlim3d(xmin, xmax)
272
+ ax.set_ylim3d(ymin, ymax)
273
+ ax.set_zlim3d(zmin, zmax)
274
+ ax.set_xlabel(r'$' + variables[0] + '$')
275
+ ax.set_ylabel(r'$' + variables[1] + '$')
276
+ ax.set_zlabel(r'$' + variables[2] + '$')
277
+ workspace.canvas3D.draw()
278
+ workspace.tabPlot.setCurrentIndex(1)
279
+
280
+
281
+ def plot(workspace, tokens=None):
282
+ """When called from window.py it initiates rendering of equations.
283
+
284
+ Arguments:
285
+ workspace {QtWidgets.QWidget} -- main layout
286
+ """
287
+ from visma.io.tokenize import tokenizer
288
+
289
+ workspace.figure2D.clear()
290
+ workspace.figure3D.clear()
291
+ if tokens is None:
292
+ tokens = workspace.eqToks[-1]
293
+ eqType = getTokensType(tokens)
294
+ LHStok, RHStok = getLHSandRHS(tokens)
295
+ variables = sorted(getVariables(LHStok, RHStok))
296
+ dim = len(variables)
297
+ graphVars, func, variables = graphPlot(workspace, False, tokens)
298
+ renderPlot(workspace, graphVars, func, variables, tokens)
299
+ if (dim == 1):
300
+ var2, var3 = selectAdditionalVariable(variables[0])
301
+ if tokens is None:
302
+ workspace.eqToks[-1] += tokenizer("0" + var2 + "+" + "0" + var3)
303
+ else:
304
+ tokens += tokenizer("0" + var2 + "+" + "0" + var3)
305
+ if (((dim == 2) or (dim == 1)) & (eqType == 'equation')):
306
+ graphVars, func, variables = graphPlot(workspace, True, tokens)
307
+ renderPlot(workspace, graphVars, func, variables, tokens)
308
+
309
+
310
+ def selectAdditionalVariable(var1):
311
+ if var1 == 'z':
312
+ var2 = 'a'
313
+ var3 = 'b'
314
+ return var2, var3
315
+ if var1 == 'Z':
316
+ var2 = 'A'
317
+ var3 = 'B'
318
+ return var2, var3
319
+ var2 = chr(ord(var1) + 1)
320
+ var3 = chr(ord(var1) + 2)
321
+ return var2, var3
322
+
323
+
324
+ def refreshPlot(workspace):
325
+ if workspace.resultOut is True and workspace.showPlotter is True:
326
+ plot(workspace)
327
+
328
+
329
+ ###############
330
+ # preferences #
331
+ ###############
332
+ # TODO: Add status tips, Fix docstrings
333
+
334
+ def plotPref(workspace):
335
+
336
+ prefLayout = QSplitter(Qt.Horizontal)
337
+
338
+ workspace.xLimitValue = QLabel(
339
+ "X-axis range: (-" + str(workspace.axisRange[0]) + ", " + str(workspace.axisRange[0]) + ")")
340
+ workspace.yLimitValue = QLabel(
341
+ "Y-axis range: (-" + str(workspace.axisRange[1]) + ", " + str(workspace.axisRange[1]) + ")")
342
+ workspace.zLimitValue = QLabel(
343
+ "Z-axis range: (-" + str(workspace.axisRange[2]) + ", " + str(workspace.axisRange[2]) + ")")
344
+
345
+ def customSlider():
346
+ limitSlider = QSlider(Qt.Horizontal)
347
+ limitSlider.setMinimum(-3)
348
+ limitSlider.setMaximum(3)
349
+ limitSlider.setValue(1)
350
+ limitSlider.setTickPosition(QSlider.TicksBothSides)
351
+ limitSlider.setTickInterval(1)
352
+ limitSlider.valueChanged.connect(lambda: valueChange(workspace))
353
+ limitSlider.setStatusTip("Change axes limit")
354
+ return limitSlider
355
+
356
+ workspace.xLimitSlider = customSlider()
357
+ workspace.yLimitSlider = customSlider()
358
+ workspace.zLimitSlider = customSlider()
359
+
360
+ workspace.meshDensityValue = QLabel(
361
+ "Mesh Layers: " + str(workspace.axisRange[3]))
362
+ workspace.meshDensityValue.setStatusTip("Increment for a denser mesh in 3D plot")
363
+ workspace.meshDensity = QSpinBox()
364
+ workspace.meshDensity.setFixedSize(200, 30)
365
+ workspace.meshDensity.setRange(10, 75)
366
+ workspace.meshDensity.setValue(30)
367
+ workspace.meshDensity.valueChanged.connect(lambda: valueChange(workspace))
368
+ workspace.meshDensity.setStatusTip("Incrementing mesh density may affect performance")
369
+
370
+ refreshPlotterText = QLabel("Apply plotter settings")
371
+ refreshPlotter = QPushButton('Apply')
372
+ refreshPlotter.setFixedSize(200, 30)
373
+ refreshPlotter.clicked.connect(lambda: refreshPlot(workspace))
374
+ refreshPlotter.setStatusTip("Apply modified settings to plotter.")
375
+
376
+ axisPref = QSplitter(Qt.Vertical)
377
+ axisPref.addWidget(workspace.xLimitValue)
378
+ axisPref.addWidget(workspace.xLimitSlider)
379
+ axisPref.addWidget(workspace.yLimitValue)
380
+ axisPref.addWidget(workspace.yLimitSlider)
381
+ axisPref.addWidget(workspace.zLimitValue)
382
+ axisPref.addWidget(workspace.zLimitSlider)
383
+
384
+ plotSetPref = QSplitter(Qt.Vertical)
385
+ plotSetPref.addWidget(workspace.meshDensityValue)
386
+ plotSetPref.addWidget(workspace.meshDensity)
387
+ plotSetPref.addWidget(refreshPlotterText)
388
+ plotSetPref.addWidget(refreshPlotter)
389
+
390
+ prefLayout.addWidget(plotSetPref)
391
+ prefLayout.addWidget(axisPref)
392
+ prefLayout.setFixedWidth(400)
393
+
394
+ return prefLayout
395
+
396
+
397
+ def valueChange(workspace):
398
+
399
+ xlimit = 10**workspace.xLimitSlider.value()
400
+ ylimit = 10**workspace.yLimitSlider.value()
401
+ zlimit = 10**workspace.zLimitSlider.value()
402
+ meshLayers = workspace.meshDensity.value()
403
+ workspace.axisRange = [xlimit, ylimit, zlimit, meshLayers]
404
+
405
+ workspace.xLimitValue.setText(
406
+ "X-axis range: (-" + str(workspace.axisRange[0]) + ", " + str(workspace.axisRange[0]) + ")")
407
+ workspace.yLimitValue.setText(
408
+ "Y-axis range: (-" + str(workspace.axisRange[1]) + ", " + str(workspace.axisRange[1]) + ")")
409
+ workspace.zLimitValue.setText(
410
+ "Z-axis range: (-" + str(workspace.axisRange[2]) + ", " + str(workspace.axisRange[2]) + ")")
411
+ workspace.meshDensityValue.setText(
412
+ "Mesh Layers: " + str(workspace.axisRange[3]))
data/visma/gui/qsolver.py ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from matplotlib.figure import Figure
2
+ from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas
3
+ from PyQt5 import QtWidgets
4
+
5
+ from visma.io.tokenize import removeSpaces, getTerms, normalize, tokenizeSymbols, removeUnary, getToken, getLHSandRHS
6
+ from visma.io.checks import checkEquation, checkTypes
7
+ from visma.io.parser import tokensToLatex
8
+ # from visma.gui.plotter import plot
9
+ from visma.simplify.simplify import simplify, simplifyEquation
10
+ from visma.gui import logger
11
+
12
+
13
+ def quickSimplify(workspace):
14
+ """Dynamic simplifier for simplifying expression as it is being typed
15
+
16
+ Arguments:
17
+ workspace {QtWidgets.QWidget} -- main layout
18
+
19
+ Returns:
20
+ qSolution/log {string} -- quick solution or error log
21
+ enableInteraction {bool} -- if False disables 'visma'(interaction) button
22
+ """
23
+ # FIXME: Crashes for some cases. Find and fix.
24
+ logger.setLogName('qsolver')
25
+ logger.setLevel(0)
26
+ qSolution = ""
27
+ strIn = workspace.textedit.toPlainText()
28
+ cleanInput = removeSpaces(strIn)
29
+ if ';' in cleanInput:
30
+ return "", True, True
31
+ terms = getTerms(cleanInput)
32
+ normalizedTerms = normalize(terms)
33
+ symTokens = tokenizeSymbols(normalizedTerms)
34
+ normalizedTerms, symTokens = removeUnary(normalizedTerms, symTokens)
35
+ if checkEquation(normalizedTerms, symTokens) is True and strIn != "":
36
+ if symTokens and symTokens[-1] is not False:
37
+ tokens = getToken(normalizedTerms, symTokens)
38
+ tokens = tokens.tokens
39
+ lhs, rhs = getLHSandRHS(tokens)
40
+ _, solutionType = checkTypes(lhs, rhs)
41
+ lhs, rhs = getLHSandRHS(tokens)
42
+ if solutionType == 'expression':
43
+ _, _, _, equationTokens, _ = simplify(tokens)
44
+ qSolution = r'$ ' + '= \ '
45
+ else:
46
+ _, _, _, _, equationTokens, _ = simplifyEquation(lhs, rhs)
47
+ qSolution = r'$ ' + '\Rightarrow \ '
48
+ qSolution += tokensToLatex(equationTokens[-1]) + ' $'
49
+ # workspace.eqToks = equationTokens
50
+ # plot(workspace)
51
+ return qSolution, True, False
52
+ elif symTokens:
53
+ log = "Invalid Expression"
54
+ workspace.logBox.append(logger.error(log))
55
+ return log, False, _
56
+ else:
57
+ log = ""
58
+ workspace.logBox.append(logger.error(log))
59
+ return log, False, _
60
+ else:
61
+ log = ""
62
+ if strIn != "":
63
+ _, log = checkEquation(normalizedTerms, symTokens)
64
+ workspace.logBox.append(logger.error(log))
65
+ return log, False, _
66
+
67
+
68
+ #######
69
+ # GUI #
70
+ #######
71
+
72
+
73
+ def qSolveFigure(workspace):
74
+ """GUI layout for quick simplifier
75
+
76
+ Arguments:
77
+ workspace {QtWidgets.QWidget} -- main layout
78
+
79
+ Returns:
80
+ qSolLayout {QtWidgets.QVBoxLayout} -- quick simplifier layout
81
+ """
82
+
83
+ bg = workspace.palette().window().color()
84
+ bgcolor = (bg.redF(), bg.greenF(), bg.blueF())
85
+ workspace.qSolveFigure = Figure(edgecolor=bgcolor, facecolor=bgcolor)
86
+ workspace.solcanvas = FigureCanvas(workspace.qSolveFigure)
87
+ workspace.qSolveFigure.clear()
88
+ qSolLayout = QtWidgets.QVBoxLayout()
89
+ qSolLayout.addWidget(workspace.solcanvas)
90
+
91
+ return qSolLayout
92
+
93
+
94
+ def renderQuickSol(workspace, log, showQSolver):
95
+ """Renders quick solution in matplotlib figure
96
+
97
+ Arguments:
98
+ workspace {QtWidgets.QWidget} -- main layout
99
+ """
100
+ if showQSolver is True:
101
+ quickSolution = log
102
+ else:
103
+ quickSolution = ""
104
+ workspace.qSolveFigure.suptitle(quickSolution, x=0.01,
105
+ horizontalalignment='left',
106
+ verticalalignment='top')
107
+ # size=qApp.font().pointSize()*1.5)
108
+ workspace.solcanvas.draw()
data/visma/gui/settings.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from PyQt5.QtWidgets import QHBoxLayout, QCheckBox, QSplitter, QComboBox, QLabel
2
+ from PyQt5.QtCore import Qt
3
+
4
+ from visma.gui.steps import stepsPref
5
+ from visma.gui.plotter import plotPref
6
+
7
+ #######
8
+ # GUI #
9
+ #######
10
+
11
+
12
+ def preferenceLayout(workspace):
13
+ """GUI layout for preferences
14
+
15
+ Arguments:
16
+ workspace {QtWidgets.QWidget} -- main layout
17
+
18
+ Returns:
19
+ hbox {QtWidgets.QHBoxLayout} -- preferences layout
20
+ """
21
+
22
+ hbox = QHBoxLayout()
23
+
24
+ workspace.QSCheckBox = QCheckBox("Quick Simplifier")
25
+ workspace.QSCheckBox.setChecked(True)
26
+ workspace.QSCheckBox.toggled.connect(lambda: buttonState(workspace.QSCheckBox, workspace))
27
+
28
+ workspace.SSSCheckBox = QCheckBox("Step-by-step Solution")
29
+ workspace.SSSCheckBox.setFixedSize(200, 30)
30
+ workspace.SSSCheckBox.setChecked(True)
31
+ workspace.SSSCheckBox.toggled.connect(lambda: buttonState(workspace.SSSCheckBox, workspace))
32
+
33
+ workspace.GPCheckBox = QCheckBox("Graph Plotter")
34
+ workspace.GPCheckBox.setChecked(False)
35
+ workspace.GPCheckBox.toggled.connect(lambda: buttonState(workspace.GPCheckBox, workspace))
36
+
37
+ splitter1 = QSplitter(Qt.Vertical)
38
+ splitter1.addWidget(workspace.QSCheckBox) # Quick Simplifier
39
+ splitter1.addWidget(workspace.SSSCheckBox) # Step-by-step Solution
40
+ splitter1.addWidget(workspace.GPCheckBox) # Graph Plotter
41
+
42
+ # Input Type Box
43
+ comboLabel = QLabel()
44
+ comboLabel.setText("Input Type:")
45
+ combo = QComboBox(workspace)
46
+ combo.setFixedSize(200, 30)
47
+ combo.addItem("Greek")
48
+ combo.addItem("LaTeX")
49
+ combo.activated[str].connect(workspace.onActivated)
50
+ stepspref1, stepspref2 = stepsPref(workspace)
51
+ inputTypeSplitter = QSplitter(Qt.Vertical)
52
+ inputTypeSplitter.addWidget(stepspref1)
53
+ inputTypeSplitter.addWidget(stepspref2)
54
+ inputTypeSplitter.addWidget(comboLabel)
55
+ inputTypeSplitter.addWidget(combo)
56
+
57
+ splitter = QSplitter(Qt.Horizontal)
58
+ splitter.addWidget(splitter1)
59
+ splitter.addWidget(inputTypeSplitter)
60
+ splitter.addWidget(plotPref(workspace))
61
+
62
+ hbox.addWidget(splitter)
63
+ return hbox
64
+
65
+
66
+ def buttonState(button, workspace):
67
+ """Takes action according to button and its state change trigger
68
+
69
+ Arguments:
70
+ button {QtWidgets.QCheckBox} -- preference checkbox
71
+ workspace {QtWidgets.QWidget} -- main layout
72
+ """
73
+
74
+ workspace.clearAll()
75
+
76
+ if button.text() == "Quick Simplifier":
77
+ if button.isChecked() is True:
78
+ workspace.showQSolver = True
79
+ else:
80
+ workspace.showQSolver = False
81
+
82
+ elif button.text() == "Step-by-step Solution":
83
+ if button.isChecked() is True:
84
+ workspace.showStepByStep = True
85
+ else:
86
+ workspace.showStepByStep = False
87
+
88
+ elif button.text() == "Graph Plotter":
89
+ if button.isChecked() is True:
90
+ workspace.showPlotter = True
91
+ else:
92
+ workspace.showPlotter = False
data/visma/gui/steps.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from matplotlib.figure import Figure
2
+ from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas
3
+ from PyQt5.QtWidgets import QVBoxLayout, qApp, QLabel, QDoubleSpinBox, QScrollArea
4
+
5
+ #######
6
+ # GUI #
7
+ #######
8
+
9
+
10
+ def stepsFigure(workspace):
11
+ """GUI layout for step-by-step solution
12
+
13
+ Arguments:
14
+ workspace {QtWidgets.QWidget} -- main layout
15
+
16
+ Returns:
17
+ stepslayout {QtWidgets.QVBoxLayout} -- step-by-step solution layout
18
+ """
19
+ workspace.stepsfigure = Figure()
20
+ workspace.stepscanvas = FigureCanvas(workspace.stepsfigure)
21
+ workspace.stepsfigure.clear()
22
+ workspace.scroll = QScrollArea()
23
+ workspace.scroll.setWidget(workspace.stepscanvas)
24
+ stepslayout = QVBoxLayout()
25
+ stepslayout.addWidget(workspace.scroll)
26
+ return stepslayout
27
+
28
+
29
+ def showSteps(workspace):
30
+ """Renders step-by-step solution in matplotlib figure
31
+
32
+ Arguments:
33
+ workspace {QtWidgets.QWidget} -- main layout
34
+ """
35
+ workspace.stepsfigure.suptitle(workspace.output, y=0.98,
36
+ horizontalalignment='center',
37
+ verticalalignment='top', size=qApp.font().pointSize()*workspace.stepsFontSize)
38
+ workspace.stepscanvas.draw()
39
+ hbar = workspace.scroll.horizontalScrollBar()
40
+ hbar.setValue((hbar.minimum()+hbar.maximum())/2)
41
+
42
+
43
+ ###############
44
+ # preferences #
45
+ ###############
46
+
47
+
48
+ def stepsPref(workspace):
49
+
50
+ workspace.sizeChangeText = QLabel("Steps font size: " + str(round(workspace.stepsFontSize, 1)) + "x")
51
+ workspace.sizeChangeBox = QDoubleSpinBox()
52
+ workspace.sizeChangeBox.setFixedSize(200, 30)
53
+ workspace.sizeChangeBox.setRange(0.1, 10)
54
+ workspace.sizeChangeBox.setValue(1)
55
+ workspace.sizeChangeBox.setSingleStep(0.1)
56
+ workspace.sizeChangeBox.setSuffix('x')
57
+ workspace.sizeChangeBox.valueChanged.connect(lambda: sizeChange(workspace))
58
+ return workspace.sizeChangeText, workspace.sizeChangeBox
59
+
60
+
61
+ def sizeChange(workspace):
62
+ workspace.stepsFontSize = workspace.sizeChangeBox.value()
63
+ workspace.sizeChangeText.setText("Steps font size: " + str(round(workspace.stepsFontSize, 1)) + "x")
64
+ if workspace.resultOut is True:
65
+ showSteps(workspace)