import copy from visma.functions.structure import Function, Expression from visma.functions.constant import Constant, Zero from visma.functions.operator import Operator, Multiply, Plus from visma.simplify.simplify import simplify from visma.functions.variable import Variable from visma.functions.exponential import Logarithm, Exponential from visma.functions.trigonometry import Trigonometric from visma.io.parser import tokensToString ################### # Differentiation # ################### def differentiate(tokens, wrtVar): """Simplifies and then differentiates given tokens wrt given variable Arguments: tokens {list} -- list of function tokens wrtVar {string} -- with respect to variable Returns: tokens {list} -- list of differentiated tokens availableOperations {list} -- list of operations token_string {string} -- output equation string animation {list} -- equation tokens for step-by-step comments {list} -- comments for step-by-step """ animation = [] comments = [] tokens, availableOperations, token_string, animation, comments = simplify(tokens) tokens, animNew, commentsNew = differentiateTokens(tokens, wrtVar) animation.append(animNew) comments.append(commentsNew) tokens, availableOperations, token_string, animation2, comments2 = simplify(tokens) animation2.pop(0) comments2.pop(0) animation.extend(animation2) comments.extend(comments2) return tokens, availableOperations, token_string, animation, comments def differentiateTokens(funclist, wrtVar): """Differentiates given tokens wrt given variable Arguments: funclist {list} -- list of function tokens wrtVar {string} -- with respect to variable Returns: diffFunc {list} -- list of differentiated tokens animNew {list} -- equation tokens for step-by-step commentsNew {list} -- comments for step-by-step """ diffFunc = [] animNew = [] commentsNew = ["Differentiating with respect to " + r"$" + wrtVar + r"$" + "\n"] for func in funclist: if isinstance(func, Operator): diffFunc.append(func) else: newExpression = Expression() newfunc = [] while(isinstance(func, Function)): commentsNew[0] += r"$" + "\\frac{d}{d" + wrtVar + "} ( " + func.__str__() + ")" + r"$" funcCopy = copy.deepcopy(func) if wrtVar in funcCopy.functionOf(): if isinstance(funcCopy, Trigonometric) or isinstance(funcCopy, Logarithm) or isinstance(funcCopy, Variable) or isinstance(funcCopy, Exponential): funcCopy = funcCopy.differentiate(wrtVar) newfunc.append(funcCopy) commentsNew[0] += r"$" + r"= " + funcCopy.__str__() + r"\ ;\ " + r"$" else: funcCopy = Zero() newfunc.append(funcCopy) commentsNew[0] += r"$" + r"= " + funcCopy.__str__() + r"\ ;\ " + r"$" newfunc.append(Multiply()) if func.operand is None: break else: func = func.operand if isinstance(func, Constant): diffFunc = Zero() break newfunc.pop() newExpression.tokens = newfunc diffFunc.extend([newExpression]) animNew.extend(diffFunc) return diffFunc, animNew, commentsNew def differentiationProductRule(tokens, wrtVar): resultTokens = [] for i in range(0, len(tokens), 2): currentDiff = Expression() currentDiffTokens, _, _, _, _ = differentiate([tokens[i]], wrtVar) currentDiff.tokens = currentDiffTokens tempTokens = copy.deepcopy(tokens) tempTokens[i] = currentDiff resultTokens.extend(tempTokens) resultTokens.append(Plus()) resultTokens.pop() token_string = tokensToString(resultTokens) # TODO: Make simplify module to simplify expressions involving Trigonometric Expressions (to some extent) # resultTokens, _, token_string, _, _ = simplify(resultTokens) return tokens, [], token_string, [], []