import copy class Function(object): """Basis function class for all functions The Function class forms the basis for the functions tokens of all types. """ def __init__(self): self.tid = None self.scope = None self.value = None self.coefficient = 1 self.power = 1 self.operand = None self.operator = None self.before = None self.after = None self.beforeScope = None self.afterScope = None def __str__(self, nv=None, np=None, nc=None): """Equation token to string Coverts equation tokens to string for text and LaTeX rendering Keyword Arguments: nv {int} -- number of values (default: {None}) np {int} -- number of powers (default: {None}) nc {int} -- number of coefficients (default: {None}) Returns: represent {string} -- string/latex representation of equation """ # OPTIMIZE: Works but a mess. Organize and add comments represent = "" if np is None and nv is None and nc is None: if self.coefficient != 1: represent += str(self.coefficient) elif nc is not None: if self.coefficient[nc] != 1: represent += str(self.coefficient[nc]) if isinstance(self.value, list): if nv is None and np is None: for eachValue, eachPower in zip(self.value, self.power): represent += "{" + str(eachValue) + "}" if eachPower != 1: represent += "^" + "{" + str(eachPower) + "}" elif nc is None: represent += "{" + str(self.value[nv]) + "}" if self.power[np] != 1: represent += "^" + "{" + str(self.power[np]) + "}" elif nc is not None: for i, val in enumerate(self.value): represent += "{" + str(val) + "}" if self.power[np][i] != 1: represent += "^" + "{" + str(self.power[np][i]) + "}" elif self.operand is not None: represent += "\\" + self.value if self.power != 1: represent += "^" + "{" + str(self.power) + "}" represent += "({" + self.operand.__str__() + "})" else: represent += "{" + str(self.value) + "}" if self.power != 1: represent += "^" + "{" + str(self.power) + "}" return represent def prop(self, tid=None, scope=None, value=None, coeff=None, power=None, operand=None, operator=None): """Set function token properties Keyword Arguments: tid {[type]} -- Token ID (default: {None}) scope {int} -- Scope (default: {None}) value {int or list} -- Value (default: {None}) coeff {int} -- Coefficient (default: {None}) power {int or list} -- Power (default: {None}) operand {visma.functions.structure.Function} -- Operand (default: {None}) operator {visma.functions.structure.Function} -- Operator (default: {None}) """ if tid is not None: self.tid = tid if scope is not None: self.scope = scope if value is not None: self.value = value if coeff is not None: self.coefficient = coeff if power is not None: self.power = power if operand is not None: self.operand = operand if operator is not None: self.operator = operator def differentiate(self): """Differentiate function token """ self.power = 1 self.coefficient = 1 def level(self): """Level of function token """ return (int((len(self.tid)) / 2)), 5 def functionOf(self): inst = copy.deepcopy(self) while inst.operand is not None: inst = inst.operand return inst.value def isZero(self): """ It checks if the Function is equal to Zero or not, to decide it should be Added, Subtracted,...etc. or not. :returns: bool """ if (self.value == 0 and self.power != 0) or self.coefficient == 0: return True return False ########## # FuncOp # ########## class FuncOp(Function): """Defined for functions of form sin(...), log(...), exp(...) etc which take a function(operand) as argument """ def __init__(self, operand=None): super().__init__() if operand is not None: self.operand = operand def __str__(self): represent = "" represent += "\\" + self.value if self.power != 1: represent += "^" + "{" + str(self.power) + "}" if self.operand is not None: represent += "{(" + str(self.operand) + ")}" return represent def inverse(self, rToken, wrtVar, inverseFunction): """Returns inverse of function Applies inverse of function to RHS and LHS. Arguments: rToken {visma.functions.structure.Function} -- RHS token wrtVar {string} -- with respect to variable inverseFunction {visma.functions.structure.Function} -- inverse of the function itself Returns: self {visma.functions.structure.Function} -- function itself(operand before inverse) rToken {visma.functions.structure.Function} -- new RHS token comment {string} -- steps comment """ rToken.coefficient /= self.coefficient rToken.power /= self.power invFunc = copy.deepcopy(inverseFunction) invFunc.operand = rToken self = self.operand comment = "Applying inverse function on LHS and RHS" return self, rToken, comment ################### # Mixed Functions # ################### # For example: sec(x)*tan(x) or sin(x)*log(x) or e^(x)*cot(x) # Will be taken care by function Expression class Expression(Function): """Class for expression type """ def __init__(self, tokens=None, coefficient=None, power=None): super().__init__() if coefficient is not None: self.coefficient = coefficient else: self.coefficient = 1 if power is not None: self.power = power else: self.power = 1 self.tokens = [] if tokens is not None: self.tokens.extend(tokens) def __str__(self): represent = "" if self.coefficient != 1: represent += str(self.coefficient) + "*" represent += "{(" for token in self.tokens: represent += token.__str__() represent += ")}" if self.power != 1: represent += "^" + "{" + str(self.power) + "}" if self.operand is not None: represent += "{(" + str(self.operand) + ")}" return represent def __mul__(self, other): from visma.functions.constant import Constant from visma.functions.variable import Variable if isinstance(other, Expression): result = Expression() for i, _ in enumerate(self.tokens): c = copy.deepcopy(self) d = copy.deepcopy(other) if isinstance(c.tokens[i], Constant) or isinstance(c.tokens[i], Variable): result.tokens.extend([c.tokens[i] * d]) else: result.tokens.extend([c.tokens[i]]) return result def __add__(self, other): from visma.functions.constant import Constant from visma.functions.variable import Variable from visma.functions.operator import Plus if isinstance(other, Expression): result = Expression() for tok1 in self.tokens: result.tokens.append(tok1) result.tokens.append(Plus()) if (other.tokens[0], Constant): if (other.tokens[0].value < 0): result.tokens.pop() elif (other.tokens[0], Variable): if (other.tokens[0].coefficient < 0): result.tokens.pop() for tok2 in other.tokens: result.tokens.append(tok2) return result elif isinstance(other, Constant): result = self constFound = False for i, _ in enumerate(self.tokens): if isinstance(self.tokens[i], Constant): self.tokens[i] += other constFound = True if constFound: return result else: result.tokens += other return result elif isinstance(other, Variable): result = Expression() result = other + self return result def __sub__(self, other): from visma.functions.constant import Constant from visma.functions.variable import Variable from visma.functions.operator import Plus, Minus if isinstance(other, Expression): result = Expression() for tok1 in self.tokens: result.tokens.append(tok1) for _, x in enumerate(other.tokens): if x.value == '+': x.value = '-' elif x.value == '-': x.value = '+' result.tokens.append(Minus()) if (isinstance(other.tokens[0], Constant)): if (other.tokens[0].value < 0): result.tokens[-1] = Plus() other.tokens[0].value = abs(other.tokens[0].value) elif (isinstance(other.tokens[0], Variable)): if (other.tokens[0].coefficient < 0): result.tokens[-1] = Plus() other.tokens[0].coefficient = abs(other.tokens[0].coefficient) return result elif isinstance(other, Constant): result = self result += (Constant(0) - other) return result elif isinstance(other, Variable): result = self a = Constant(0) - other result = a + result return result class Equation(Expression): """Class for equation type """ def __init__(self): super().__init__() self.tokens = None