from visma.functions.structure import Expression from visma.functions.constant import Constant from visma.functions.variable import Variable from visma.functions.operator import Binary, Sqrt from visma.functions.exponential import Logarithm from visma.io.checks import isNumber, mathError from visma.matrix.structure import Matrix from visma.functions.trigonometry import Trigonometric def resultLatex(equationTokens, operation, comments, solutionType, simul=False, wrtVar=None): """Converts tokens to LaTeX format for displaying in step-by-step solution figure Arguments: operation {string} -- operation performed on input equations {list} -- list of tokens list comments {list} -- list of comments Keyword Arguments: wrtVar {string} -- with respect to variable (default: {None}) Returns: finalSteps {string} -- final result in LaTeX """ equationLatex = [] for eqTokens in equationTokens: equationLatex.append(tokensToLatex(eqTokens)) finalSteps = '' if not simul: if operation in ['combination', 'permutation']: finalSteps = 'INPUT: ' + '(Combinatorics ' + r'$' + ' tokens)' + r'$' + '\n' else: finalSteps = 'INPUT: ' + r'$' + equationLatex[0] + r'$' + '\n' else: finalSteps = 'INPUT: ' + '(Multiple ' + r'$' + ' equations)' + r'$' + '\n' finalSteps += 'OPERATION: ' + operation + '\n' finalSteps += 'OUTPUT: ' + r'$' + equationLatex[-1] + r'$' + 2*'\n' for i, _ in enumerate(equationLatex): if comments[i] != [] and equationLatex[i] != '': finalSteps += '(' + str(comments[i][0]) + ')' + '\n' finalSteps += r'$' + equationLatex[i] + r'$' + 2*"\n" elif comments[i] != [] and equationLatex[i] == '': finalSteps += '\n' + '[' + str(comments[i][0]) + ']' + '\n' elif comments[i] == [] and equationLatex[i] != '': finalSteps += '\n' + r'$' + equationLatex[i] + r'$' + 2*'\n' if mathError(equationTokens[-1]) and (not simul): finalSteps += 'Math Error: LHS not equal to RHS' + "\n" return finalSteps def resultStringCLI(equationTokens, operation, comments, solutionType, simul=False, mat=False): """Converts tokens to final string format for displaying in terminal in CLI Arguments: equationTokens {list} -- list of animations or step by step tokens operation {string} -- operation performed on input comments {list} -- list of comments solutionType {string} -- type of solution expression/equation simul{bool} -- True indicates user has entered simultaneous equation Returns: finalSteps {string} -- final result to be displayed in CLI """ equationString = [] for x in equationTokens: equationString.append(tokensToString(x)) commentsString = [] for x in comments: if not x: commentsString.append([]) else: for y in x: commentsString.append([y.translate({ord(c): None for c in '${\}'})]) finalSteps = '' finalSteps = 'INPUT: ' + equationString[0] + '\n' finalSteps += 'OPERATION: ' + operation + '\n' finalSteps += 'OUTPUT: ' + equationString[-1] + 2*'\n' finalSteps += 'STEP-BY-STEP SOLUTION: ' + '\n' for i, _ in enumerate(equationString): if comments[i] != [] and equationString[i] != '': finalSteps += '(' + str(commentsString[i][0]) + ')' + '\n' finalSteps += equationString[i] + 2*"\n" elif comments[i] != [] and equationString[i] == '': finalSteps += '\n' + '[' + str(commentsString[i][0]) + ']' + '\n' elif comments[i] == [] and equationString[i] != '': finalSteps += '\n' + equationString[i] + 2*'\n' if mathError(equationTokens[-1]) and (not simul): finalSteps += 'Math Error: LHS not equal to RHS' + "\n" return finalSteps def resultMatrixString(operation=None, operand1=None, operand2=None, nonMatrixResult=False, result=None): if operation == 'sub': operation = 'Subtraction' elif operation == 'add': operation = 'Addition' elif operation == 'mult': operation = 'Multiplication' elif operation == 'determinant': operation = 'Determinant' elif operation == 'trace': operation = 'Trace: sum of diagonal elements' elif operation == 'simplify': operation = 'Simplification' finalSteps = '' if operand2 is not None: finalSteps += 'INPUT: ' + 'Two matrices provided as follows:' + 2*'\n' finalSteps += '1st Matrix Provided: \n' finalSteps += operand1.convertMatrixToString(False) + '\n' finalSteps += '2nd Matrix Provided: \n' finalSteps += operand2.convertMatrixToString(False) + 2*'\n' else: finalSteps += 'INPUT: ' + 'Single matrix provided as follows:' + '\n' finalSteps += '1st Matrix Provided: \n' finalSteps += operand1.convertMatrixToString(False) + '\n' finalSteps += 'OPERATION: ' + operation + 2*'\n' if not nonMatrixResult: finalSteps += 'RESULT: Result Matrix calculated as: \n' finalSteps += result.convertMatrixToString(False) + '\n' else: finalSteps += 'RESULT: Result calculated as: \n' finalSteps += tokensToString(result) + '\n' return finalSteps def resultMatrixStringLatex(operation=None, operand1=None, operand2=None, nonMatrixResult=False, result=None): # TODO: use package /asmath for displaying Matrices in Step By Step figure if operation == 'sub': operation = 'Subtraction' elif operation == 'add': operation = 'Addition' elif operation == 'mult': operation = 'Multiplication' elif operation == 'determinant': operation = 'Determinant' elif operation == 'trace': operation = 'Trace: sum of diagonal elements' elif operation == 'simplify': operation = 'Simplification' finalSteps = '' if operand2 is not None: finalSteps += 'INPUT: ' + 'Two matrices provided as follows:' + 2*'\n' finalSteps += '1st Matrix Provided: \n' finalSteps += operand1.convertMatrixToString(True) + '\n' finalSteps += '2nd Matrix Provided: \n' finalSteps += operand2.convertMatrixToString(True) + 2*'\n' else: finalSteps += 'INPUT: ' + 'Single matrix provided as follows:' + '\n' finalSteps += '1st Matrix Provided: \n' finalSteps += operand1.convertMatrixToString(True) + '\n' finalSteps += 'OPERATION: ' + operation + 2*'\n' if not nonMatrixResult: finalSteps += 'RESULT: Result Matrix calculated as: \n' finalSteps += result.convertMatrixToString(True) + '\n' else: finalSteps += 'RESULT: Result calculated as: \n' finalSteps += tokensToString(result) + '\n' return finalSteps def tokensToLatex(eqTokens): """Converts tokens to LaTeX string Arguments: eqTokens {list} -- list of function tokens Returns: eqLatex {string} -- equation string in LaTeX """ eqLatex = "" for token in eqTokens: if isinstance(token, Matrix): eqLatex += "\\begin{bmatrix}" for row in token.value: for column in row: for term in column: eqLatex += term.__str__() if row.index(column) < len(row) - 1: eqLatex += '&' elif row.index(column) == len(row) - 1 and token.value.index(row) < len(token.value) - 1: eqLatex += '\\\\' eqLatex += "\\end{bmatrix}" else: eqLatex += token.__str__() return eqLatex def latexToTerms(terms): for index, term in enumerate(terms): if term == 'frac': terms.remove(terms[index]) if index < len(terms): terms.remove(terms[index]) j = index while j < len(terms) and terms[j] != '}': j += 1 if j < len(terms): terms.remove(terms[j]) terms.insert(j, '/') if j+1 < len(terms): terms.remove(terms[j+1]) while j < len(terms) and terms[j] != '}': j += 1 if j < len(terms): terms.remove(terms[j]) return terms def tokensToString(tokens): """Converts tokens to text string Arguments: tokens {list} -- list of function tokens Returns: tokenString {string} -- equation string """ # FIXME: tokensToString method tokenString = '' for token in tokens: if isinstance(token, Constant): if isinstance(token.value, list): for j, val in token.value: if token['power'][j] != 1: tokenString += (str(val) + '^(' + str(token.power[j]) + ')') else: tokenString += str(val) elif isNumber(token.value): if token.power != 1: tokenString += (str(token.value) + '^(' + str(token.power) + ')') else: tokenString += str(token.value) elif isinstance(token, Variable): if token.coefficient == 1: pass elif token.coefficient == -1: tokenString += '-' else: tokenString += str(token.coefficient) for j, val in enumerate(token.value): if token.power[j] != 1: tokenString += (str(val) + '^(' + str(token.power[j]) + ')') else: tokenString += str(val) elif isinstance(token, Binary): tokenString += ' ' + str(token.value) + ' ' elif isinstance(token, Expression): if token.coefficient != 1: tokenString += str(token.coefficient) + '*' tokenString += '(' tokenString += tokensToString(token.tokens) tokenString += ')' if token.power != 1: tokenString += '^(' + str(token.power) + ')' elif isinstance(token, Sqrt): tokenString += 'sqrt[' if isinstance(token.power, Constant): tokenString += tokensToString([token.power]) elif isinstance(token.power, Variable): tokenString += tokensToString([token.power]) elif isinstance(token.power, Expression): tokenString += tokensToString(token.power.tokens) tokenString += '](' if isinstance(token.operand, Constant): tokenString += tokensToString([token.operand]) elif isinstance(token.operand, Variable): tokenString += tokensToString([token.operand]) elif isinstance(token.operand, Expression): tokenString += tokensToString(token.operand.tokens) tokenString += ')' elif isinstance(token, Logarithm): if token.coefficient == 1: pass elif token.coefficient == -1: tokenString += '-' else: tokenString += str(token.coefficient) if token.operand is not None: tokenString += token.value if token.power != 1: tokenString += "^" + "(" + str(token.power) + ")" tokenString += "(" + tokensToString([token.operand]) + ")" elif isinstance(token, Trigonometric): if token.coefficient == 1: pass elif token.coefficient == -1: tokenString += '-' else: tokenString += str(token.coefficient) if token.operand is not None: tokenString += token.value if token.power != 1: tokenString += "^" + "(" + str(token.power) + ")" tokenString += "(" + tokensToString([token.operand]) + ")" elif isinstance(token, Matrix): tokenString += "[" for i in range(token.dim[0]): for j in range(token.dim[1]): tokenString += tokensToString(token.value[i][j]) tokenString += "," tokenString = tokenString[:-1] + ";" tokenString = tokenString[:-1] + "]" return tokenString