from visma.functions.operator import Binary from visma.functions.structure import Expression from visma.functions.constant import Constant from visma.simplify.simplify import simplify from visma.matrix.structure import Matrix from visma.gui import logger def simplifyMatrix(mat): """Simplifies each element in the matrix Arguments: mat {visma.matrix.structure.Matrix} -- matrix token Returns: mat {visma.matrix.structure.Matrix} -- simplified matrix token """ mat.dim[0] = len(mat.value) mat.dim[1] = len(mat.value[0]) for i in range(mat.dim[0]): for j in range(mat.dim[1]): mat.value[i][j], _, _, _, _ = simplify(mat.value[i][j]) return mat def addMatrix(matA, matB): """Adds two matrices Arguments: matA {visma.matrix.structure.Matrix} -- matrix token matB {visma.matrix.structure.Matrix} -- matrix token Returns: matSum {visma.matrix.structure.Matrix} -- sum matrix token Note: Make dimCheck before calling addMatrix """ matSum = Matrix() matA.dim[0] = len(matA.value) matA.dim[1] = len(matA.value[0]) matSum.empty(matA.dim) for i in range(matA.dim[0]): for j in range(matA.dim[1]): matSum.value[i][j].extend(matA.value[i][j]) matSum.value[i][j].append(Binary('+')) matSum.value[i][j].extend(matB.value[i][j]) matSum = simplifyMatrix(matSum) return matSum def subMatrix(matA, matB): """Subtracts two matrices Arguments: matA {visma.matrix.structure.Matrix} -- matrix token matB {visma.matrix.structure.Matrix} -- matrix token Returns: matSub {visma.matrix.structure.Matrix} -- subtracted matrix token Note: Make dimCheck before calling subMatrix """ matSub = Matrix() matA.dim[0] = len(matA.value) matA.dim[1] = len(matA.value[0]) matSub.empty(matA.dim) for i in range(matA.dim[0]): for j in range(matA.dim[1]): matSub.value[i][j].extend(matA.value[i][j]) matSub.value[i][j].append(Binary('-')) matSub.value[i][j].extend(matB.value[i][j]) matSub = simplifyMatrix(matSub) return matSub def multiplyMatrix(matA, matB): """Multiplies two matrices Arguments: matA {visma.matrix.structure.Matrix} -- matrix token matB {visma.matrix.structure.Matrix} -- matrix token Returns: matPro {visma.matrix.structure.Matrix} -- product matrix token Note: Make mulitplyCheck before calling multiplyMatrix Not commutative """ matPro = Matrix() matA.dim[0] = len(matA.value) matA.dim[1] = len(matA.value[0]) matB.dim[0] = len(matB.value) matB.dim[1] = len(matB.value[0]) matPro.empty([matA.dim[0], matB.dim[1]]) for i in range(matA.dim[0]): for j in range(matB.dim[1]): for k in range(matA.dim[1]): if matPro.value[i][j] != []: matPro.value[i][j].append(Binary('+')) if len(matA.value[i][k]) != 1: matPro.value[i][j].append(Expression(matA.value[i][k])) else: matPro.value[i][j].extend(matA.value[i][k]) matPro.value[i][j].append(Binary('*')) if len(matB.value[k][j]) != 1: matPro.value[i][j].append(Expression(matB.value[k][j])) else: matPro.value[i][j].extend(matB.value[k][j]) matPro = simplifyMatrix(matPro) return matPro def scalarAdd(const, mat): """ Adds constant terms with Matrix Arguments: const {string}--- constant value mat {visma.matrix.structure.Matrix} -- matrix token Returns: matRes {visma.matrix.structure.Matrix} -- sum matrix token Note: This scalar addition follows the following equation {mat} + {lambda}{identity mat} """ matRes = Matrix() mat.dim[0] = len(mat.value) mat.dim[1] = len(mat.value[0]) matRes.empty(mat.dim) for i in range(mat.dim[0]): for j in range(mat.dim[1]): if i != j: matRes.value[i][j].extend(mat.value[i][j]) else: if len(mat.value[i][j]) != 1: matRes.value[i][j].append(Expression(mat.value[i][j])) else: matRes.value[i][j].extend(mat.value[i][j]) matRes.value[i][j].append(Binary('+')) matRes.value[i][j].append(Constant(int(const))) matRes = simplifyMatrix(matRes) return matRes def scalarSub(const, mat): """ Subtracts constant terms with Matrix Arguments: const {string}--- constant value mat {visma.matrix.structure.Matrix} -- matrix token Returns: matRes {visma.matrix.structure.Matrix} -- subtracted matrix token Note: This scalar addition follows the following equation {mat} - {lambda}{identity mat} """ matRes = Matrix() matRes.empty([mat.dim[0], mat.dim[1]]) for i in range(mat.dim[0]): for j in range(mat.dim[1]): if i != j: matRes.value[i][j].extend(mat.value[i][j]) else: if len(mat.value[i][j]) != 1: matRes.value[i][j].append(Expression(mat.value[i][j])) else: matRes.value[i][j].extend(mat.value[i][j]) matRes.value[i][j].append(Binary('-')) matRes.value[i][j].append(Constant(int(const))) matRes = simplifyMatrix(matRes) return matRes def scalarMult(const, mat): """Multiplies constant terms with Matrix Arguments: const {string}--- constant value mat {visma.matrix.structure.Matrix} -- matrix token Returns: matRes {visma.matrix.structure.Matrix} -- product matrix token """ matRes = Matrix() matRes.empty([mat.dim[0], mat.dim[1]]) for i in range(mat.dim[0]): for j in range(mat.dim[1]): if len(mat.value[i][j]) != 1: matRes.value[i][j].append(Expression(mat.value[i][j])) else: matRes.value[i][j].extend(mat.value[i][j]) matRes.value[i][j].append(Binary('*')) matRes.value[i][j].append(Constant(int(const))) matRes = simplifyMatrix(matRes) return matRes def scalarDiv(const, mat): """Divides constant terms with Matrix Arguments: const {string}--- constant value mat {visma.matrix.structure.Matrix} -- matrix token Returns: matRes {visma.matrix.structure.Matrix} -- result matrix token """ if const != 0: matRes = Matrix() matRes.empty([mat.dim[0], mat.dim[1]]) for i in range(mat.dim[0]): for j in range(mat.dim[1]): if len(mat.value[i][j]) != 1: matRes.value[i][j].append(Expression(mat.value[i][j])) else: matRes.value[i][j].extend(mat.value[i][j]) matRes.value[i][j].append(Binary('/')) matRes.value[i][j].append(Constant(int(const))) matRes = simplifyMatrix(matRes) return matRes else: logger.error("ZeroDivisionError: Cannot divide matrix by zero") def row_echelon(mat): """ Returns the row echelon form of the given matrix Arguments: mat {visma.matrix.structure.Matrix} -- matrix token Returns: row_echelon {visma.matrix.structure.Matrix} -- result matrix token """ N = mat.dim[0] M = mat.dim[1] for k in range(0, N): if abs(mat.value[k][k][0].value) == 0.0: if k == N-1: return simplifyMatrix(mat) else: for i in range(0, N): t = mat.value[k][i] mat.value[k][i] = mat.value[k+1][i] mat.value[k+1][i] = t else: for i in range(k+1, N): temp = [] temp.extend(mat.value[i][k]) temp.append(Binary('/')) temp.extend(mat.value[k][k]) temp, _, _, _, _ = simplify(temp) for j in range(k+1, M): temp2 = [] temp2.extend(mat.value[k][j]) temp2.append(Binary('*')) temp2.extend(temp) temp2, _, _, _, _ = simplify(temp2) mat.value[i][j].append(Binary('-')) mat.value[i][j].extend(temp2) mat.value[i][k].append(Binary('*')) mat.value[i][k].append(Constant(0)) mat = simplifyMatrix(mat) return simplifyMatrix(mat) def gauss_elim(mat): """ Returns calculated values of unknown variables Arguments: mat {visma.matrix.structure.Matrix} -- matrix token Returns: result {visma.matrix.structure.Matrix} -- result matrix token Note: result is a Nx1 matrix """ echelon = Matrix() echelon = row_echelon(mat) result = Matrix() result.empty([mat.dim[0], 1]) N = mat.dim[0] M = mat.dim[1] index = N-1 for i in range(N-1, -1, -1): sum_ = [] temp = [] if echelon.value[i][i][0].value == 0.0: # no unique solution for this case return -1 for j in range(i+1, M-1): temp = [] temp.extend(echelon.value[i][j]) temp.append(Binary('*')) temp.extend(result.value[j][0]) temp, _, _, _, _ = simplify(temp) sum_.extend(temp) if j != M-2: sum_.append(Binary('+')) sum_, _, _, _, _ = simplify(sum_) result.value[index][0].extend(echelon.value[i][M-1]) if sum_: if sum_[0].value < 0: result.value[index][0].append(Binary('-')) # negative sign makes the negative sign in value positive else: result.value[index][0].append(Binary('-')) result.value[index][0].extend(sum_) result.value[index][0], _, _, _, _ = simplify(result.value[index][0]) result.value[index][0].append(Binary('/')) result.value[index][0].extend(echelon.value[i][i]) result.value[index][0], _, _, _, _ = simplify(result.value[index][0]) index -= 1 return result