''' Owner: AerospaceResearch.net About: This module hosts the functions used for finding roots of a cubic equation Note: Please try to maintain proper documentation Logic Description: ''' import math import copy from visma.io.checks import getVariables from visma.io.parser import tokensToString from visma.functions.structure import Expression from visma.functions.constant import Constant, Zero from visma.functions.variable import Variable from visma.functions.operator import Binary, Plus, Minus, Sqrt from visma.simplify.simplify import simplifyEquation, moveRTokensToLTokens from visma.config.values import ROUNDOFF def getRootsCubic(coeffs): """ Applies an implementation of Cardano's Method (https://en.wikipedia.org/wiki/Cubic_function) on the coefficients of the cubic equation roots Arguments: coeffs {list} -- list of coefficients of the equation Returns: roots {list} -- list of roots of cubic equation (each element of roots {list} is a list of two elements, where 1st one denotes real part & second part shows imaginary part) animation {list} -- list of equation solving process comments {list} -- list of comments in equation solving process """ from visma.solvers.polynomial.roots import cubeRoot roots = [] animations = [] comments = [] a = coeffs[3] b = coeffs[2] c = coeffs[1] d = coeffs[0] f = ((3*c/a) - (b**2/a**2))/3 g = ((2*(b**3)/(a**3)) - (9*b*c/(a**2)) + (27*d/a))/27 h = ((g**2)/4) + ((f**3)/27) animations += [[]] comments += [['Value of determinants [f, g, h] are ' + str(f) + ', ' + str(g) + ', ' + str(h)]] if h <= 0: if h == 0 and g == 0 and f == 0: # All three (real) roots exist and are equal animations += [[]] comments += [['Hence, three equal real roots exist.']] res = cubeRoot(d/a) valueX1 = [-res, 0] valueX2 = [-res, 0] valueX3 = [-res, 0] roots.append(valueX1) else: # All three (real) roots exist animations += [[]] comments += [['Hence, three equal non-equal real roots exist.']] i = (((g**2)/4) - h) ** (1./2.) j = cubeRoot(i) k = math.acos(-g/(2*i)) L = j * (-1) M = math.cos(k/3) N = math.sqrt(3) * (math.sin(k/3)) P = -(b/(3*a)) valueX1 = [2*j*(math.cos(k/3)) - (b/(3*a)), 0] valueX2 = [L*(M + N) + P, 0] valueX3 = [L*(M - N) + P, 0] roots.extend([valueX1, valueX2, valueX3]) else: # Only one (real) root exists animations += [[]] comments += [['Hence, one real root exists']] R = -(g/2) + h ** (1./2.) S = cubeRoot(R) T = -(g/2) - (h ** (1./2.)) U = cubeRoot(T) valueX1 = [(S + U) - (b/(3*a)), 0] valueRealX2 = -(S + U)/2 - (b/(3*a)) valueImagX2 = (S - U)*(3 ** (1./2.))/2 valueX2 = [valueRealX2, valueImagX2] valueRealX3 = -(S + U)/2 - (b/(3*a)) valueImagX3 = -(S - U)*(3 ** (1./2.))/2 valueX3 = [valueRealX3, valueImagX3] roots.extend([valueX1, valueX2, valueX3]) return roots, animations, comments def cubicRoots(lTokens, rTokens): '''Used to get roots of a cubic equation This functions also translates roots {list} into final result of solution Argument: lTokens {list} -- list of LHS tokens rTokens {list} -- list of RHS tokens Returns: lTokens {list} -- list of LHS tokens rTokens {list} -- list of RHS tokens {empty list} token_string {string} -- final result stored in a string animation {list} -- list of equation solving process comments {list} -- list of comments in equation solving process ''' from visma.solvers.polynomial.roots import getCoefficients animations = [] comments = [] lTokens, rTokens, _, token_string, animNew1, commentNew1 = simplifyEquation(lTokens, rTokens) animations.extend(animNew1) comments.extend(commentNew1) if len(rTokens) > 0: lTokens, rTokens = moveRTokensToLTokens(lTokens, rTokens) coeffs = getCoefficients(lTokens, rTokens, 3) var = getVariables(lTokens) roots, animNew2, commentNew2 = getRootsCubic(coeffs) animations.extend(animNew2) comments.extend(commentNew2) tokens1 = [] expression1 = Expression(coefficient=1, power=3) variable = Variable(1, var[0], 1) tokens1.append(variable) if roots[0][1] == 0: binary = Binary() if roots[0][0] < 0: roots[0][0] *= -1 binary.value = '+' else: binary.value = '-' tokens1.append(binary) constant = Constant(round(roots[0][0], ROUNDOFF), 1) tokens1.append(constant) expression1.tokens = tokens1 lTokens = [expression1, Binary('*')] if len(roots) > 1: expression1.power = 1 for _, root in enumerate(roots[1:]): tokens2 = [] expression2 = Expression(coefficient=1, power=1) variable = Variable(1, var[0], 1) tokens2.append(variable) binary = Binary() if root[1] == 0: if root[0] < 0: root[0] *= -1 binary.value = '+' else: binary.value = '-' tokens2.append(binary) constant = Constant(round(root[0], ROUNDOFF), 1) tokens2.append(constant) else: binary.value = '-' tokens2.append(binary) expressionResult = Expression(coefficient=1, power=1) tokensResult = [] real = Constant(round(root[0], ROUNDOFF), 1) tokensResult.append(real) imaginary = Constant(round(root[1], ROUNDOFF), 1) if imaginary.value < 0: tokensResult.append(Minus()) imaginary.value = abs(imaginary.value) tokensResult.append(imaginary) else: tokensResult.extend([Plus(), imaginary]) sqrt = Sqrt(Constant(2, 1), Constant(-1, 1)) tokensResult.append(Binary('*')) tokensResult.append(sqrt) expressionResult.tokens = tokensResult tokens2.append(expressionResult) expression2.tokens = tokens2 lTokens.extend([expression2, Binary('*')]) lTokens.pop() rTokens = [Zero()] tokenToStringBuilder = copy.deepcopy(lTokens) tokLen = len(lTokens) equalTo = Binary() equalTo.scope = [tokLen] equalTo.value = '=' tokenToStringBuilder.append(equalTo) tokenToStringBuilder.extend(rTokens) token_string = tokensToString(tokenToStringBuilder) animations.append(copy.deepcopy(tokenToStringBuilder)) comments.append([]) return lTokens, rTokens, [], token_string, animations, comments