""" Initial Author: Siddharth Kothiyal (sidkothiyal, https://github.com/sidkothiyal) Other Authors: Owner: AerospaceResearch.net About: This module hosts the functions used for finding roots of a quartic equation Note: Please try to maintain proper documentation Logic Description: """ import math import copy from visma.io.checks import getVariables from visma.io.parser import tokensToString from visma.functions.structure import Expression from visma.functions.constant import Constant, Zero from visma.functions.variable import Variable from visma.functions.operator import Binary, Sqrt from visma.simplify.simplify import simplifyEquation, moveRTokensToLTokens from visma.config.values import ROUNDOFF # FIXME: Extend to polynomials of all degrees def getRootsQuadratic(coeffs): '''Applies Quadratic Formula (https://en.wikipedia.org/wiki/Quadratic_formula) on the coefficients of the quadratic equation Arguments: coeffs {list} -- list of coefficients of the quadratic equation Returns: roots {list} -- list of roots of quadratic equation ''' animations = [] comments = [] roots = [] if len(coeffs) == 3: d = (coeffs[1] * coeffs[1]) - (4 * coeffs[0] * coeffs[2]) if d == 0: roots.append(-(coeffs[1] / (2 * coeffs[2]))) animations += [[]] comments += [['Value of determinant is: ' + str(d) + ' thus, Only one roots']] elif d > 0: d = math.sqrt(d) roots.append(-(coeffs[1] + d) / (2 * coeffs[2])) roots.append(-(coeffs[1] - d) / (2 * coeffs[2])) animations += [[]] comments += [['Value of determinant is: ' + str(d) + ' thus, two (real) roots']] else: imaginary = [-(coeffs[1] / (2 * coeffs[2])), -1, (math.sqrt(-d)) / (2 * coeffs[2])] roots = imaginary animations += [[]] comments += [['Value of determinant is: ' + str(d) + ' thus, two (imaginary) roots']] return roots, animations, comments def quadraticRoots(lTokens, rTokens): '''Used to get quadratic roots of an equation Argument: lTokens {list} -- list of LHS tokens rTokens {list} -- list of RHS tokens Returns: lTokens {list} -- list of LHS tokens rTokens {list} -- list of RHS tokens {empty list} token_string {string} -- final result stored in a string animation {list} -- list of equation solving process comments {list} -- list of comments in equation solving process ''' from visma.solvers.polynomial.roots import getCoefficients animations = [] comments = [] lTokens, rTokens, _, token_string, animNew1, commentNew1 = simplifyEquation(lTokens, rTokens) animations.extend(animNew1) comments.extend(commentNew1) if len(rTokens) > 0: lTokens, rTokens = moveRTokensToLTokens(lTokens, rTokens) coeffs = getCoefficients(lTokens, rTokens, 2) var = getVariables(lTokens) roots, animNew2, commentNew2 = getRootsQuadratic(coeffs) animations.extend(animNew2) comments.extend(commentNew2) if len(roots) == 1: tokens = [] expression = Expression(coefficient=1, power=2) variable = Variable(1, var[0], 1) tokens.append(variable) binary = Binary() if roots[0] < 0: roots[0] *= -1 binary.value = '+' else: binary.value = '-' tokens.append(binary) constant = Constant(round(roots[0], ROUNDOFF), 1) tokens.append(constant) expression.tokens = tokens lTokens = [expression] elif len(roots) == 2: tokens = [] expression = Expression(coefficient=1, power=1) variable = Variable(1, var[0], 1) tokens.append(variable) binary = Binary() if roots[0] < 0: roots[0] *= -1 binary.value = '+' else: binary.value = '-' tokens.append(binary) constant = Constant(round(roots[0], ROUNDOFF), 1) tokens.append(constant) expression.tokens = tokens tokens2 = [] expression2 = Expression(coefficient=1, power=1) tokens2.append(variable) binary2 = Binary() if roots[1] < 0: roots[1] *= -1 binary2.value = '+' else: binary2.value = '-' tokens2.append(binary2) constant2 = Constant(round(roots[1], ROUNDOFF), 1) tokens2.append(constant2) expression2.tokens = tokens2 binary3 = Binary() binary3.value = '*' lTokens = [expression, binary3, expression2] elif len(roots) == 3: binary4 = Binary() if roots[0] < 0: roots[0] *= -1 binary4.value = '+' else: binary4.value = '-' constant3 = Constant(round(roots[0], ROUNDOFF), 1) binary5 = Binary() binary5.value = '*' constant2 = Constant(round(roots[2], ROUNDOFF), 1) tokens = [] expression = Expression(coefficient=1, power=1) variable = Variable(1, var[0], 1) tokens.extend([variable, binary4, constant3]) binary = Binary() binary.value = '+' tokens.extend([binary, constant2, binary5]) constant = Constant(round(roots[1], ROUNDOFF), 1) sqrt = Sqrt(Constant(2, 1), constant) tokens.append(sqrt) expression.tokens = tokens tokens2 = [] expression2 = Expression(coefficient=1, power=1) variable2 = Variable(1, var[0], 1) tokens2.extend([variable2, binary4, constant3]) binary2 = Binary() binary2.value = '-' tokens2.extend([binary2, constant2, binary5, sqrt]) expression2.tokens = tokens2 binary3 = Binary() binary3.value = '*' lTokens = [expression, binary3, expression2] zero = Zero() rTokens = [zero] comments.append([]) tokenToStringBuilder = copy.deepcopy(lTokens) tokLen = len(lTokens) equalTo = Binary() equalTo.scope = [tokLen] equalTo.value = '=' tokenToStringBuilder.append(equalTo) tokenToStringBuilder.extend(rTokens) animations.append(copy.deepcopy(tokenToStringBuilder)) token_string = tokensToString(tokenToStringBuilder) return lTokens, rTokens, [], token_string, animations, comments