'''This module hosts the driver functions used for finding roots of an equation & also contains utility functions used by other files of visma.solvers.polynomial Note: Please try maintain proper documentation ''' import copy import math from visma.io.checks import evaluateConstant, preprocessCheckPolynomial from visma.functions.constant import Constant from visma.functions.variable import Variable from visma.functions.operator import Binary from visma.solvers.polynomial.quadratic import quadraticRoots from visma.solvers.polynomial.cubic import cubicRoots from visma.solvers.polynomial.quartic import quarticRoots def rootFinder(lTokens, rTokens): '''Main function called by driver modules to calculate roots of equation Argument: lTokens {list} -- list of left side tokens rTokens {list} -- list of right side tokens Returns: lTokens {list} -- list of left side tokens rTokens {list} -- list of right side tokens {empty list} token_string {string} -- final result stored in a string animation {list} -- list of equation solving process comments {list} -- list of comments in equation solving process ''' lTokensTemp = copy.deepcopy(lTokens) rTokensTemp = copy.deepcopy(rTokens) _, polyDegree = preprocessCheckPolynomial(lTokensTemp, rTokensTemp) if polyDegree == 2: lTokens, rTokens, _, token_string, animation, comments = quadraticRoots(lTokens, rTokens) elif polyDegree == 3: lTokens, rTokens, _, token_string, animation, comments = cubicRoots(lTokens, rTokens) elif polyDegree == 4: lTokens, rTokens, _, token_string, animation, comments = quarticRoots(lTokens, rTokens) return lTokens, rTokens, [], token_string, animation, comments def getCoefficients(lTokens, rTokens, degree): '''Used by root finder modules to get a list of coefficients of equation Argument: lTokens {list} -- list of left side tokens rTokens {list} -- list of right side tokens degree {int} -- degree of equation Returns: coeffs {list} -- list of coefficients of equation (item at ith index is coefficient of x^i) ''' coeffs = [0] * (degree + 1) for i, token in enumerate(lTokens): if isinstance(token, Constant): cons = evaluateConstant(token) if i != 0: if isinstance(lTokens[i - 1], Binary): if lTokens[i - 1].value in ['-', '+']: if lTokens[i - 1].value == '-': cons *= -1 if (i + 1) < len(lTokens): if lTokens[i + 1].value not in ['*', '/']: coeffs[0] += cons else: return [] else: coeffs[0] += cons if isinstance(token, Variable): if len(token.value) == 1: var = token.coefficient if i != 0: if isinstance(lTokens[i - 1], Binary): if lTokens[i - 1].value in ['-', '+']: if lTokens[i - 1].value == '-': var *= -1 if (i + 1) < len(lTokens): if lTokens[i + 1].value not in ['*', '/']: if token.power[0] in [1, 2, 3, 4]: coeffs[int(token.power[0])] += var else: return [] else: return [] else: if token.power[0] in [1, 2, 3, 4]: coeffs[int(token.power[0])] += var else: return [] else: return [] return coeffs def squareRootComplex(value): '''Used by root finder modules to get square root of a complex number Argument: value {list of 2 elements} -- 1st element indicates real part & other element indicates imaginary part Returns: root {float} -- root of imaginary number ''' a = value[0] b = value[1] root = 2*[0] root[0] = math.sqrt((a + math.sqrt(a*a + b*b))/2) root[1] = math.sqrt((math.sqrt(a*a + b*b) - a)/2) if b < 0: root[1] = -root[1] return root def cubeRoot(value): '''Used by root finder modules to get cube root of floats Argument: value {float} -- whose cube root is to be found Returns: root {float} -- cube root of "value" ''' if value >= 0: return value ** (1./3.) else: return (-(-value) ** (1./3.))