from visma.io.tokenize import tokenizer, getLHSandRHS from visma.simplify.simplify import simplifyEquation, moveRTokensToLTokens from visma.io.parser import tokensToString from visma.functions.constant import Constant from visma.functions.variable import Variable from visma.matrix.special import cramerMatrices from visma.io.checks import getVariableSim def coeffCalculator(LandR_tokens, variables): '''Finds coefficients of x, y and z and the constant term when solving for 3 simulaneous equations. Arguments: LandR_tokens -- 3 x 2 list -- each row contains left and right tokens of certain equation. Returns: coefficients -- 3 X 4 list -- each each row contains coefficients for x, y, z and constant term respectively. ''' coefficients = [] coefficients = [[0] * 4 for _ in range(3)] for i, LandR_token in enumerate(LandR_tokens): lTokens = LandR_token[0] rTokens = LandR_token[1] if len(rTokens) > 0: lTokens, rTokens = moveRTokensToLTokens( lTokens, rTokens ) for _, token in enumerate(lTokens): if isinstance(token, Variable): if token.value == [variables[0]]: coefficients[i][0] = token.coefficient elif token.value == [variables[1]]: coefficients[i][1] = token.coefficient elif token.value == [variables[2]]: coefficients[i][2] = token.coefficient if isinstance(token, Constant): coefficients[i][3] = token.value return coefficients def getResult(matD, matDx, matDy, matDz, variables, comments, animation, solveFor=None): '''Calculates values of x, y and z Arguments: matD {visma.matrix.structure.Matrix.SquareMat} -- Matrix Token matD {visma.matrix.structure.Matrix.SquareMat} -- Matrix Token matD {visma.matrix.structure.Matrix.SquareMat} -- Matrix Token matD {visma.matrix.structure.Matrix.SquareMat} -- Matrix Token comments {list} -- list of comments animation {list} -- equation tokens for step by step Returns: comments {list} -- list of comments animations {list} -- list of step by step tokens trivial {bool} -- Indicates if trivial solutions exist or not ''' x = 0 y = 0 z = 0 trivial = True detD = float(tokensToString(matD.determinant())) detDx = float(tokensToString(matDx.determinant())) detDy = float(tokensToString(matDy.determinant())) detDz = float(tokensToString(matDz.determinant())) comments += [['Determinant value of first Crammer Matrix D = ' + str(detD)]] animation += [[]] comments += [['Determinant value of second Cramer Matrix Dx = ' + str(detDx)]] animation += [[]] comments += [['Determinant value of third Cramer Matrix Dy = ' + str(detDy)]] animation += [[]] comments += [['Determinant value of fourth Cramer Matrix Dz = ' + str(detDz)]] animation += [[]] if detD == 0: trivial = False if trivial: x = detDx/detD y = detDy/detD z = detDz/detD resultStr = '' if trivial: if solveFor == variables[0]: resultStr = str(variables[0]) + ' = ' + str(x) comments += [[]] animation += [tokenizer(resultStr)] elif solveFor == variables[1]: resultStr = str(variables[1]) + ' = ' + str(y) comments += [[]] animation += [tokenizer(resultStr)] elif solveFor == variables[2]: resultStr = str(variables[2]) + ' = ' + str(z) comments += [[]] animation += [tokenizer(resultStr)] elif solveFor is None: resultStr1 = str(variables[0]) + ' = ' + str(x) comments += [[]] animation += [tokenizer(resultStr1)] resultStr2 = str(variables[1]) + ' = ' + str(y) comments += [[]] animation += [tokenizer(resultStr2)] resultStr3 = str(variables[2]) + ' = ' + str(z) comments += [[]] animation += [tokenizer(resultStr3)] elif not trivial: comments += [['There is no trivial solution to the the provided set of equations as D = 0']] animation += [[]] return comments, animation, trivial def simulSolver(eqTok1, eqTok2, eqTok3, solveFor=None): ''' Main driver function in simulEqn.py Arguments: eqTok1 {lsit} -- list of tokens of first equation eqTok2 {lsit} -- list of tokens of second equation eqTok3 {lsit} -- list of tokens of third equation solveFor -- string/character -- variable for which equation is being solved. Returns: tokenLastString {string} -- last step in string form animations {list} -- list of step by step tokens comments {list} -- list of comments ''' animation = [] comments = [] variables = [] # List of variables with respect to which equation can be solved. eqnTokens = [eqTok1, eqTok2, eqTok3] # Stores list of strings for 3 equations. LandR_tokens = [] # ith entry stores L & R tokens for ith eqations. for _, tokens in enumerate(eqnTokens): lTokens, rTokens = getLHSandRHS(tokens) LandR_tokens.append([lTokens, rTokens]) variables = getVariableSim(eqnTokens) for i, tokens in enumerate(LandR_tokens): lTokens, rTokens, _, _, animationEach, commentsEach = simplifyEquation(tokens[0], tokens[1]) animationEach = [[]] + animationEach if i == 0: commentsEach = [['Simplifying the ' + str(i + 1) + 'st ' + 'equation']] + commentsEach if i == 1: commentsEach = [['Simplifying the ' + str(i + 1) + 'nd ' + 'equation']] + commentsEach elif i == 2: commentsEach = [['Simplifying the ' + str(i + 1) + 'rd ' + 'equation']] + commentsEach animation.extend(animationEach) comments.extend(commentsEach) LandR_tokens[i] = [lTokens, rTokens] coefficients = coeffCalculator(LandR_tokens, variables) # (as of now) its a 3 by 4 matrix; each row has coeff of x, y, z and constant term. matD, matDx, matDy, matDz = cramerMatrices(coefficients) if solveFor is not None: comments, animation, trivial = getResult(matD, matDx, matDy, matDz, variables, comments, animation, solveFor) else: comments, animation, trivial = getResult(matD, matDx, matDy, matDz, variables, comments, animation) if trivial: if solveFor is not None: lastTokenString = tokensToString(animation[-1]) else: lastTokenString = tokensToString(animation[-1]) + ';' + tokensToString(animation[-2]) + ';' + tokensToString(animation[-3]) else: lastTokenString = 'No Trivial Solution' return lastTokenString, animation, comments